Use of decision-based simulations to assess resident readiness for operative independence

Anne-Lise D. D’Angelo, M.D. a, Elaine R. Cohen, M.Ed. a, Calvin Kwan, B.S. a, Shlomi Laufer, Ph.D. a,b, Caprice Greenberg, M.D., M.P.H. a, Jacob Greenberg, M.D., Ed.M. a, Douglas Wiegmann, Ph.D. c, Carla M. Pugh, M.D., Ph.D. a,c,*

aDepartment of Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue H4/385A CSC Madison, WI 53792-3236, USA; bDepartment of Electrical Engineering and Computer Science, cDepartment of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA

Abstract

BACKGROUND: Recent literature has called into question resident readiness for operative independence at the end of general surgery training.

METHODS: We used a simulation-based exit examination to assess resident readiness. Six chief residents performed 3 simulated procedures: bowel anastomosis, laparoscopic ventral hernia (LVH) repair, and pancreaticojejunostomy. Faculty assessed resident performance using task-specific checklists, Objective Structured Assessment of Technical Skills (OSATS), and final product analysis.

RESULTS: Residents’ individual task-specific checklist scores ranged from 25% to 100% across all 3 procedures. Mean OSATS scores ranged from 4.06 to 4.23/5.0. Residents scored significantly higher on “instrument knowledge” (mean = 4.78, standard deviation [SD] = 23) than “time and motion” (mean = 3.94, SD = .48, P = .025) and “ability to adapt to individual pathologic circumstances” (mean = 4.06, SD = .12, P = .002). Final product analysis revealed a range of errors, including incorrect technique and poor intraoperative planning.

CONCLUSIONS: Despite relatively high OSATS ratings, residents had a wide range of errors and procedure outcomes. Exit assessments using multiple evaluation metrics may improve awareness of residents’ learning needs.

Recent literature has shown an increasing number of general surgery residents pursuing fellowship training after graduation.1,2 This trend of seeking additional training may result from residents’ lack of confidence in their readiness for independent operative performance.3–7 Nationally, resident readiness has been called into question and is a focus of the ongoing debate regarding the current structure of general surgery training programs.3–4 However, most of the data on graduating residents’ ability for independent performance...
are based on opinion surveys with variable response rates and anecdotal evidence. To better assess resident readiness, evaluations that focus on measuring technical and nontechnical skills of graduating residents must be performed.

Additional concerns regarding the structure of general surgery training have come from data relating to operative experiences of surgical residents and increasing failure rates on the Certifying (oral) Examination of the American Board of Surgery (ABS). Despite operative case experience requirements by the Accreditation Council for Graduate Medical Education, surgery residents have variable operative experiences. Of the 121 procedures considered essential by program directors, graduating chief residents in 2005 only performed 18 of these more than 10 times during their general surgery training. These data demonstrate that residents are not receiving repeated exposure to a large number of common procedures. It also highlights the need for assessments of surgical performance to determine if residents are reaching competency in essential procedures.

Within the last few years, the ABS has established new requirements for documenting graduating resident skills in the clinical and operative environments. These include passing scores on Fundamentals of Laparoscopic Surgery (instituted 2010) and Fundamentals of Endoscopic Surgery (planned institution in 2017) and documentation of program-based assessments of 2 clinical and 2 operative encounters (instituted 2012). Additionally, residents graduating in 2015 are required to participate in 25 cases as a teaching assistant, where the senior resident instructs a junior resident during a case. These new requirements for performance evaluations and teaching cases during residency training demonstrate the growing concern regarding the need for standardized assessment of and experience in independent operative performance. This is coupled with the fact that most assessment-based research on trainee performance is primarily performed with medical students and junior residents as participants.

Current assessment tools for surgical technical skills include task-specific and global rating scales, final product analysis, and documentation of critical failures. The assessment tool Objective Structured Assessment of Technical Skill (OSATS) was originally designed with a task-specific checklist, pass/fail judgment, and a global rating scale. The global rating scale has been advocated by the developers of the OSATS based on data demonstrating higher inter-rater reliability and relationship with experience level as evidence of construct validity. However, there are concerns about the objectivity of the tool in the operating room and data demonstrating lower reliability than procedure-based assessments. Given the varying data on the use of specific assessment measures and the need for the development of standardized assessment measures of resident readiness for operative independence, we planned to assess graduating chief resident’s performance using multiple assessment tools.

In our previous work, we developed error-enabled, decision-based operative simulators. These simulators are designed to represent a range of complexity as designated by the Surgical Council on Resident Education (SCORE) curriculum handbook. Additionally, the simulation environment allows residents to practice procedures independently and commit errors, which may demonstrate knowledge and skill deficits not identifiable in the operating room. The aim of this study was to assess graduating resident readiness for operative independence on 3 simulated procedures using multiple assessment measures of performance.

Methods

Setting and participants

Study participants were graduating chief residents at an academic general surgery training program. Data collection occurred in a single setting approximately 1 month before graduation. This study was reviewed by the University of Wisconsin Health Sciences Institutional Review Board and was approved as a no more than minimal risk study. Written informed consent was obtained from all participants.

Simulated procedures

Chief residents performed 3 simulated surgical procedures. The procedures were selected to assess both open and laparoscopic skills and evaluate performance on a range of operative complexity as designated by the Surgical Council on Resident Education curriculum. The simulated procedures were (1) laparoscopic ventral hernia (LVH) repair (laparoscopic essential—common); (2) hand-sewn bowel anastomosis (open essential—common); and (3) pancreateicojejunostomy (complex) (Fig. 1). The pancreateicojejunostomy was selected for the complex procedure as residents at the institution rotate on a service with multiple pancreatic surgeons.

Participants were given 30 minutes to complete each procedure. The simulators were designed to induce decision making throughout the procedures. At the bowel anastomosis and pancreateicojejunostomy stations, a faculty member served as an operative assistant. The faculty members had not previously operated with the participants and were instructed to not provide feedback during the procedure. At the LVH station, a researcher with basic laparoscopic skills acted as the operative assistant and did not provide feedback. To avoid sequence effects, the residents did not perform the procedures in the same order. The participants began at the LVH, bowel anastomosis, or pancreateicojejunostomy stations and rotated through the remaining stations in a random order.

LVH repair

This station was designed to represent a patient with a ventral hernia after a midline incision. The performance goal was to successfully repair the LVH. The simulator is a box-style trainer with a plastic base covered by a fabric skin that contains a 10 x 10-cm ventral hernia defect.
was designed to look like the abdominal cavity, specifically from the diaphragm to the upper plane of the pelvic cavity. The simulator was fabricated to represent the layers of the abdominal wall including skin, subcuticular tissue, and peritoneum. Inside, simulated organs including bowel and omentum are layered within the cavity to provide the appearance of gross anatomy. The simulator allows for the use of both laparoscopic and open surgical instruments, except cautery, during each step of the procedure. During this simulated procedure, residents are required to make decisions throughout the procedure including port location, mesh sizing, mesh orientation, and mesh fixation.

Bowel anastomosis

This station was designed to represent a trauma patient who sustained a gunshot wound to the abdomen. The goal was to successfully repair an injury to the small bowel. The simulator consisted of porcine intestines arranged in a basin with accompanying artificial blood and retained bullet. The bowel injury was created at the antimesenteric border. There were 2 full thickness injuries in close proximity: 1 large and 1 small. The larger injury had jagged edges and was closer to the antimesenteric border. The smaller injury was positioned near the mesenteric border of the larger injury. An example of the injury is shown in Fig. 2. A complete surgical tray with all the necessary open surgical instruments and suture were provided to complete the repair. During the bowel repair simulation, residents must make operative decisions, including identification of the injuries, choice of repair technique (primary repair vs resection with side-to-side anastomosis), and selection of suture and stitch technique.
Pancreaticojejunostomy

This station was designed to represent a patient with pancreatic cancer along with biliary and pancreatic ductal dilation. The goal was to perform a duct-to-mucosal pancreaticojejunos tomy. As such, the participants were informed that the resection had already been completed. The simulator consisted of a fabricated pancreas, pancreatic duct, bowel, and mesentery arranged within a basin lined with simulated peritoneum.20,22 The simulator was constructed from fabric and plastic materials. A complete surgical tray with all the necessary open surgical instruments and suture were provided to complete the repair. During this simulated procedures, residents are required to make operative decisions including planning of anastomosis given relevant anatomy, selection of suture, and alterations in technique in response to simulated tissue characteristics.

Surveys

Before performing the simulated procedures, residents completed a survey designed to collect information about demographics and choice of fellowship specialty or general surgery practice. Operative case logs were obtained to evaluate the number of cases residents had performed during their general surgery training. The preprocedure survey also used a 5-point Likert scale to assess resident confidence performing each of the 3 procedures (LVH, bowel anastomosis, and pancreaticojejunos tomy) independently. After performing each of the simulated procedures, residents completed another survey rating overall task difficulty (5-point Likert scale), postprocedure confidence (5-point Likert scale), and the most challenging step in each procedure.

After completing the exit examination, residents also completed a postassessment survey rating their satisfaction with the simulations (5-point Likert scale) and which year they felt these assessments should take place during their residency.

Performance rating scales

Faculty rated performance using (1) task-specific checklists; (2) adapted OSATS; and (3) final product analysis. Task-specific checklists were used for each of the individual stations to evaluate procedure-specific technical skills (Supplementary Data). The LVH and pancreaticojejunos tomy checklists were developed based on previous cognitive task analysis22 and faculty evaluations,20 and the bowel anastomosis checklist was used as previously published.17 The previously published OSATS rating scale was adapted to assess general technical skills on each of the 3 stations.17 This adapted OSATS scale differed by including assessment of “ability to adapt to individual pathologic circumstances” and excluding assessment of “knowledge of specific procedure.” This adaption was made as all the senior residents had previously performed these procedures, and we wanted to focus on surgical planning and ability to adapt to different clinical presentations. Expert faculty surgeons at each station rated resident performance throughout the procedure using the adapted OSATS scale and task-specific checklists. Final product analysis of the simulated procedures was performed, and faculty members documented errors in technique. Final product analysis of the LVH repair included analysis of hernia coverage, use of anchoring sutures, and placement of tacks. For the bowel anastomosis, the final repair was evaluated for technique used, orientation of the repair, and luminal narrowing. Lastly, the pancreaticojejunos tomy was evaluated for suture selection and injury to the superior mesenteric vein and anterior and posterior suture lines.

Data analyses

We evaluated performance on 3 simulated operative procedures with rating scales for general technical skills, task-specific technical skills, and final product analysis. This was done to compare overall performance on different measures and identify deficiencies in operative skills. Preprocedure and postprocedure confidence ratings were averaged, and means were compared with repeated measures analysis of variance (ANOVA) and paired t tests. Completion rates were determined using the number of residents who finished each procedure. Task-specific and OSATS checklist scores were averaged across stations. To determine which aspects of the OSATS global rating scale residents performed significantly different on, repeated measures ANOVA and follow-up t tests with a Bonferronni correction for multiple pairwise comparisons were performed. Deficiencies were tallied and noted for each procedure. Resident responses on the postassessment survey were averaged.
Table 1 Faculty ratings of resident performance for task-specific checklists and OSATS*

<table>
<thead>
<tr>
<th>Measures</th>
<th>LVH mean (SD)</th>
<th>Bowel anastomosis, mean (SD)</th>
<th>Pancreateicojejunostomy, mean (SD)</th>
<th>Mean score across stations, mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task-specific checklists (%) correct OSATS</td>
<td>61.1% (25.1%)</td>
<td>86.1% (13.1%)</td>
<td>82.3% (10.8%)</td>
<td>-</td>
</tr>
<tr>
<td>Respect for tissue</td>
<td>4.67 (.82)</td>
<td>3.58 (.80)</td>
<td>4.00 (.63)</td>
<td>4.08 (.84)</td>
</tr>
<tr>
<td>Time and motion</td>
<td>4.17 (.41)</td>
<td>3.83 (1.03)</td>
<td>3.83 (.75)</td>
<td>3.94 (.75)†</td>
</tr>
<tr>
<td>Knowledge of Instruments</td>
<td>4.83 (.41)</td>
<td>4.83 (.41)</td>
<td>4.67 (.52)</td>
<td>4.78 (.43)†</td>
</tr>
<tr>
<td>Use of assistants</td>
<td>4.00 (.89)</td>
<td>3.83 (.41)</td>
<td>3.83 (.98)</td>
<td>3.89 (.76)</td>
</tr>
<tr>
<td>Flow of operation and forward planning</td>
<td>4.33 (.82)</td>
<td>4.42 (.66)</td>
<td>4.12 (.98)</td>
<td>4.31 (.79)</td>
</tr>
<tr>
<td>Ability to adapt to individual pathologic circumstances</td>
<td>4.00 (.63)</td>
<td>4.00 (0)</td>
<td>4.12 (.41)</td>
<td>4.06 (.42)†</td>
</tr>
<tr>
<td>Overall performance</td>
<td>3.67 (1.03)</td>
<td>4.08 (.66)</td>
<td>3.75 (.88)</td>
<td>3.83 (.84)</td>
</tr>
</tbody>
</table>

LVH = laparoscopic ventral hernia; OSATS = Objective Structured Assessment of Technical Skills.
*Responses on a 5-point Likert scale from 1 = very poor to 5 = clearly superior.
†P < .05, repeated measures analysis of variance with follow-up t tests and Bonferonni correction for multiple pairwise comparisons.

Results

Demographics

Six graduating chief residents completed this study. Half of the study participants were men. All the graduating residents planned to complete fellowships. Fellowship specialties included critical care (n = 2), minimally invasive surgery (n = 1), and colorectal surgery (n = 3). The participants logged total major cases ranging from 870 to 1,162 (mean = 974.8; standard deviation [SD] = 103.1). They also logged an average of 15.0 (SD = 2.6) LVH repairs; 20.7 (SD = 6.1) open small bowel enterectomies; and 12.5 (SD = 2.6) total pancreas cases, of which, on average, 6.8 (SD = 2.8) were pancreaticoduodenectomy (Whipple) procedures. Total teaching assistant cases ranged from 21 to 109 (mean = 54.7, SD = 29.3).

Preprocedure and postprocedure confidence

Both preprocedure and postprocedure, residents were more confident to independently perform the LVH repair (pre-mean = 4.0/5.0, SD = .63; post-mean = 4.0/5.0; SD = .63) and bowel anastomosis (pre-mean = 4.3/5.0, SD = .52; post-mean = 3.8/5.0, SD = 1.7) than the pancreaticojejunostomy (pre-mean = 2.5/5.0, SD = .84; post-mean = 2.8/5.0, SD = 1.17; F1,5 = 21.67, P < .001; all pairwise comparisons P < .01). There was no significant change in confidence ratings after performing the procedures (F1,10 = .056, P = .822).

LVH repair

Only 1 of 6 residents completed the LVH procedure station in the allotted time. Individual LVH task-specific checklist scores ranged from 25.0% to 100.0% (mean = 61.1%, SD = 25.1%; Table 1). Of 12 independent items on the LVH task-specific checklist, the most prevalent incomplete tasks were “orienting mesh with at least a 3-cm overlap on each side” (83.3% incomplete), “placing mesh flat” (83.3% incomplete), and “applying tacks at 1-cm interval to prevent exposure of mesh’s adhesiogenic surface” (83.3% incomplete). Mean OSATS score was 4.24/5.0 (SD = .53). On the OSATS global rating scale, residents scored the lowest for the “use of assistants” and “ability to adapt to individual pathologic circumstances”. Residents scored the highest on “respect for tissue” (Table 1). Residents most frequently rated “visualizing the hernia defect” (50.0%) as the most challenging procedure step. Final product analysis revealed errors in the placement of tacks and use of an inappropriate number of anchoring sutures.

Bowel anastomosis

All 6 residents completed the bowel anastomosis procedure station in the allotted time. Individual bowel anastomosis task-specific checklist scores ranged from 68.1% to 100.0% (mean = 86.1%, SD = 13.1%; Table 1). Of 22 independent items on the bowel anastomosis task-specific checklist, the most prevalent incomplete items were “using hemostats to hold stay sutures” (50.0% incomplete) and “placement of inverting sutures” (50.0% incomplete). Mean OSATS score for the bowel anastomosis was 4.08/5.0 (SD = .41). On the OSATS global rating scale, residents scored the lowest on “respect for tissue” and scored the highest on “knowledge of instruments” (Table 1). Residents most frequently rated “selecting the correct stitch” (50.0%) as the most challenging procedure step. Final product analysis revealed several errors including closure in the longitudinal direction rather than horizontal direction with narrowing of the lumen, suboptimal spacing of suture, and missed injury.
Pancreaticojejunostomy

All 6 residents completed the pancreaticojejunostomy procedure station in the allotted time. Individual pancreaticojejunostomy task-specific checklist scores ranged from 68.8% to 93.8% (mean = 82.3%, SD = 10.8%) (Table 1). Of 16 independent items on the pancreaticojejunostomy task-specific checklist, the most prevalent incomplete items were “placing backwall sutures first” (66.7% incomplete) and “use of forceps to handle needle” (50.0% incomplete). Mean OSATS score for the pancreaticojejunostomy was 4.06/5.0 (SD = .51). On the OSATS global rating scale, residents scored the lowest on “time and motion” and scored the highest on “knowledge of instruments” (Table 1). Residents most frequently rated “planning for backwall sutures” (66.7%) as the most challenging procedure step. Final product analysis revealed errors including failure to place back wall sutures, failure to take pancreatic tissue in bites, puncture of the superior mesenteric vein, and tearing through pancreatic tissue.

Comparative OSATS analysis

The repeated measures ANOVA on the OSATS global rating scale revealed the main effect for simulation station was nonsignificant ($F_{2,12} = .786, P = .478$), indicating that resident scores on the OSATS global rating scale items were not significantly different between the 3 simulation stations. However, there was a significant main effect for OSATS global rating scale items ($F_{2,3,14,0} = 4.29, P = .031$), indicating that resident scores on the individual OSATS items were significantly different. Residents received significantly higher scores on “instrument knowledge” (mean = 4.78, SD = 23) than “time and motion” (mean = 3.94, SD = .48), $t(5) = 5.41, P = .025$, and “ability to adapt to individual pathologic circumstances” (mean = 4.06, SD = .12), $t(5) = 8.30, P = .002$ (Table 1).

Resident evaluation

Likert scale results show a trend toward higher ratings for the bowel anastomosis simulation, followed by LVH, and then the pancreaticojejunostomy. Residents also felt that they were well prepared to make intraoperative decisions independently (Table 2). Residents almost unanimously agreed that the LVH and bowel anastomosis assessments should take place during their third to fourth year of residency. In addition, almost all residents agreed that the pancreaticojejunostomy assessment should take place during their fifth year.

Comments

New requirements from ABS for documenting graduating resident skills in the clinical and operative environments have highlighted the need for standardized assessments of resident operative performance. In this study, 6 graduating chief residents performed 3 simulated operative procedures: LVH repair, bowel anastomosis, and pancreaticojejunostomy. The aim of this study was to assess graduating resident readiness for operative independence on 3 simulated procedures using multiple assessment measures of performance.

Only 1 resident completed the LVH repair in the allotted time, whereas all 6 participants completed the bowel anastomosis and pancreaticojejunostomy. Residents were most confident in their ability to perform the bowel anastomosis and least confident to perform the pancreaticojejunostomy before the procedures. This was consistent with the average number of case residents logged for each of these procedures before participating in this study. Therefore, residents had higher self-confidence in procedures they had performed more frequently. There was little change in overall self-confidence after the simulated procedures; however, postprocedure residents were most confident in their ability to perform the LVH repair despite only 1 resident successfully completing this procedure. This indicates that the use of resident confidence as a proxy for readiness for independence may not be the best method for investigating ability for independent operative performance of graduating residents. This is consistent with previous literature revealing that self-assessment alone is not an accurate measure of physician competence.

Faculty used task-specific checklists, OSATS, and final product analysis to rate resident performance. There was variable performance on all 3 procedures based on task-specific checklist completion (LVH 25.0% to 100.0%, bowel anastomosis 68.1% to 100.0%, and pancreaticojejunostomy 68.8% to 93.8%) indicating a range of resident ability. These low-performance statistics is in contrast to the relatively high mean OSATS ratings for each of the procedures (LVH 4.23; bowel anastomosis 4.08; pancreaticojejunostomy 4.06).

<table>
<thead>
<tr>
<th>Survey item</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I received useful educational feedback from the skill assessments</td>
<td>3.33 (1.21)</td>
</tr>
<tr>
<td>The LVH simulation model is useful for skill assessments</td>
<td>3.83 (.41)</td>
</tr>
<tr>
<td>The bowel anastomosis simulation model is useful for skill assessments</td>
<td>4.17 (.41)</td>
</tr>
<tr>
<td>The pancreaticojejunostomy simulation model is useful for skills assessments</td>
<td>3.67 (.82)</td>
</tr>
<tr>
<td>Assessments like these should be a required part of the surgery residency curriculum</td>
<td>3.67 (.52)</td>
</tr>
<tr>
<td>In general, I feel well prepared to make intraoperative decisions independently</td>
<td>4.10 (.75)</td>
</tr>
</tbody>
</table>

LVH = laparoscopic ventral hernia.
*Responses on a 5-point Likert scale from 1 = strongly disagree to 5 = strongly agree.
pancreaticojejunostomy 4.06). Additionally, resident scores on the individual OSATS global rating scale items were not significantly different between the 3 simulation stations. This indicates that the individual OSATS global rating scale items were not sensitive to differences in performance on the different simulations. Lastly, final product analysis revealed a range of critical errors not captured by the task-specific checklist or OSATS scores. The uniformity in OSATS scores may relate to the tendency for normative-based assessment with this scale, rating performance according to post graduate year rather than actual performance.25 Additionally, the range of scores on the different measures may result from each assessment tool evaluating a different construct within the domain of independent operative performance. OSATS is designed to evaluate skills globally, whereas the task-specific checklists focus on whether specific components of the procedure are completed. Final product analysis is necessary to ensure that the actual procedure was completed without critical errors. Thus, to best evaluate resident readiness, multiple rating methods need to be used during performance assessment.

On the OSATS rating scale, residents scored significantly higher on “instrument knowledge” than “time and motion” and “ability to adapt to individual pathologic circumstances”. “Time and motion” and “ability to adapt” may represent performance domains that are more difficult for residents to master or require additional experience. There was a nonsignificant trend toward lower OSATS scores for “use of assistants”. The lower scores for “use of assistants” may reflect a lack of experience providing direction in the operating room. Although residents have the opportunity later in their training to serve as a teaching assistant, this experience may be variable as evidenced by the wide range of teaching assistant cases logged (range 21 to 109) by the participants in this study. The ability to direct an operative assistant is an important component of independent performance, and a greater effort to provide this experience during residency may be warranted.

The limitations of this study include the small sample size of 6 participants. This likely limited the power required to find significant differences in performance and correlations between experience and performance. Our participants comprised the entire graduating class of chief residents at an academic training institution. The consistently small class size of graduating residents at training institutions calls for future work to be pursued at a multi-institutional level to have an adequate sample size. Another limitation of this study was the potential for observer bias.26 The use of checklist and OSATS forms with evidence of validity was intended to help mitigate potential observer bias. Lastly, there are limitations in the use of simulation to assess operative performance. The LVH and pancreaticojejunostomy simulators have been previously assessed for evidence of validity.20–22 The bowel anastomosis assessment was adapted from a previously published checklist with validity evidence.17 Additionally, this simulator was rated highly by participants in terms of usefulness and recommended for assessment during post graduate years 3 to 4. The fact that only 1 resident completed the LVH procedure in the allotted time could represent difficulty using the simulator. However, our previous work with this particular simulator has demonstrated that senior residents commit fewer errors and have an improved ability to complete the procedure in the allotted time after didactic training.21 Future work using an error-based framework may allow for further characterization of the failure to complete the simulated LVH repair.

This study was performed just before graduation, which did not allow for curricular changes to affect the participants. Although feedback was provided to the program co-ordinator and director, the timing of the assessment underscores the importance of moving competency-based evaluations earlier in residency. The early identification of deficits in knowledge and skill allows for remediation and reassessment throughout the training program. Repeat assessments make tracking of resident progression toward independent operative performance possible.

As surgery faculty and program directors responsible for resident education continue to evaluate the surgical residency curricula, more work is required to assess resident readiness for operative independence. This study is revealing as it used surgical simulators that allow for independent operative performance, direction of operative assistants, and intraoperative decision making. Simulation-based assessments of this nature should employ multiple rating scales as task-specific checklists, global rating scales, and final product analysis may each assess different constructs within independent surgical performance. Lastly, further development and integration of error-based assessment frameworks may be particularly valuable to identify specific deficits not characterized by checklists or global rating scales.

Acknowledgements

Funding for this study came from the Department of Defense grant no. W81XWH-13-1-0080 entitled, “Psychomotor and Error Enabled Simulations: Modeling Vulnerable Skills in the Pre-Mastery Phase.”

Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.amjsurg.2014.10.002.

References