Antenatal maternally-administered phosphodiesterase type 5 inhibitors normalize eNOS expression in the fetal lamb model of congenital diaphragmatic hernia

Eveline H. Shue a, Samuel C. Schecter a, Wenhui Gong b, Mozziyar Etemadi a, Michael Johengen b, Corey Iqbal a, S. Christopher Derderian a, Peter Oishi b, Jeffrey R. Fineman b, Doug Miniati a,⁎

a Department of Surgery, Division of Pediatric Surgery and Fetal Treatment Center, University of California, San Francisco, San Francisco, CA
b Department of Pediatrics, University of California, San Francisco, San Francisco, CA

A R T I C L E I N F O
Article history:
Received 11 September 2013
Accepted 30 September 2013

Key words:
Congenital diaphragmatic hernia
DH
Pulmonary hypertension
Phosphodiesterase type 5 inhibitors
PDE5 inhibitors

A B S T R A C T
Purpose: Pulmonary hypertension (pHTN), a main determinant of survival in congenital diaphragmatic hernia (CDH), results from in utero vascular remodeling. Phosphodiesterase type 5 (PDE5) inhibitors have never been used antenatally to treat pHTN. The purpose of this study is to determine if antenatal PDE5 inhibitors can prevent pHTN in the fetal lamb model of CDH.

Methods: CDH was created in pregnant ewes. Postoperatively, pregnant ewes received oral placebo or tadalafl, a PDE5 inhibitor, until delivery. Near term gestation, lambs underwent resuscitations, and lung tissue was snap frozen for protein analysis.

Results: Mean cGMP levels were 0.53 ± 0.11 in placebo-treated fetal lambs and 1.73 ± 0.21 in tadalafl-treated fetal lambs (p = 0.002). Normalized expression of eNOS was 82% ± 12% in Normal-Placebo, 61% ± 5% in CDH-Placebo, 116% ± 6% in Normal-Tadalafil, and 86% ± 8% in CDH-Tadalafil lambs. Normalized expression of β-sGC was 105% ± 15% in Normal-Placebo, 82% ± 3% in CD-Placebo, 158% ± 16% in Normal-Tadalafil, and 86% ± 8% in CDH-Tadalafil lambs. Endothelial NOS and β-sGC were significantly decreased in CDH (p = 0.0007 and 0.01 for eNOS and β-sGC, respectively), and tadalafil significantly increased eNOS expression (p = 0.0002).

Conclusions: PDE5 inhibitors can cross the placental barrier; β-sGC and eNOS are downregulated in fetal lambs with CDH. Antenatal PDE5 inhibitors normalize eNOS and may prevent in utero vascular remodeling in CDH.

© 2014 Elsevier Inc. All rights reserved.

Congenital diaphragmatic hernia is a birth malformation that affects approximately 1:2000 newborns [1]. Despite advancements in postnatal care, a recent multicenter worldwide study indicates that the overall survival is still only 68% [2]. The current mainstay of treatment includes respiratory support and stabilization prior to repair of the diaphragmatic defect. During this period, some infants experience progressive acidosis and hypoxemia resistant to inhaled nitric oxide due to pulmonary hypoplasia, pulmonary hypertension and persistent fetal circulation. The severity of pulmonary hypoplasia and pulmonary hypertension contributes significant morbidity and mortality to infants with CDH and remains the main determinant of survival [2–4].

The molecular mechanisms involved in pulmonary hypertension and pulmonary vascular remodeling in CDH are complex and multifactorial [5]. Both abnormal muscularization of distal arterioles [6–8] and an innate pulmonary vascular hyperreactivity [3,9] contribute to pulmonary hypertension, and these effects occur in both lungs, regardless of the laterality of the diaphragmatic hernia. Treatment includes inhaled nitric oxide, extracorporeal membrane oxygenation, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. PDE5 inhibitors are currently used to treat adults [10] and children [11,12] with pulmonary hypertension. Sildenafil, a PDE5 inhibitor, has also been used in pregnant women with no adverse side-effects for mother or fetus [13]. However, PDE5 inhibitors have never been used in humans antenatally to prevent pulmonary hypertension from developing.

A prenatal diagnosis of CDH offers a unique opportunity to treat fetuses antenatally with PDE5 inhibitors to potentially circumvent the pulmonary vascular remodeling that occurs during pulmonary development in CDH. PDE5 inhibitors prevent the breakdown of cyclic GMP (cGMP), which acute acts on the vascular smooth muscle cells to prolong pulmonary vasodilation. However, chronically, they may be able to alter gene expression to prevent the vascular remodeling that contributes to pulmonary hypertension in utero. The purpose of this study is to determine if the cGMP pathway is altered in the fetal lamb model of CDH. We hypothesize that antenatal maternally-administered PDE5 inhibitors can decrease the severity of

⁎ Corresponding author. Department of Surgery, Division of Pediatric Surgery, UCSF School of Medicine, The Permanente Medical Group, Kaiser Permanente Roseville Women and Children's Center, Medical Office Building 2, Pediatric Specialties, 2nd Floor, 1600 Eureka Road, Roseville CA 95661. Tel.: +1 916 474 2250; fax: +1 916 474 2277.
E-mail address: doug.miniati@kp.org (D. Miniati).

0022-3468/ see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpedsurg.2013.09.024
pulmonary hypertension in fetal lambs with surgical diaphragmatic hernias by altering expression of proteins in the cGMP pathway.

1. Methods

1.1. Animals

A total of 21 ewes and 26 lambs were used for this study. Specific "n" numbers for each experiment are delineated in the relevant figure.

1.1.1. Plasma tadalafl concentration

Maternal ewes underwent laparotomy and hysterotomy, and jugular venous catheters were placed in normal fetuses at gestational day 85–90 (this was the earliest gestational age at which the fetal tissue integrity could allow for securing of the catheters). Catheters were exteriorized onto the maternal ewe so that blood samples could be obtained from the fetus in utero. Postoperatively, maternal ewes received four days of tadalafl orally (dosed at either 1 mg/kg/day or 2 mg/kg/day) before serum concentrations were determined in order to achieve a steady state. After four days, blood was drawn at administration (0 h) of the fifth dose, and at 2, 4, 6, 8, and 24 h afterwards from maternal ewes. In fetal lambs, blood was drawn at administration (0 h) and at 4, 8, 12, 16, 20, and 24 h afterwards. Serum tadalafl levels were determined by liquid chromatography and mass spectrometry. Sample size was limited to one maternal ewe and one fetus for each dosage (total n = 2 maternal ewes and n = 2 fetuses) due to budgetary constraints and loss of additional fetuses to preterm labor, likely related to entanglement with the fetal catheters. Lambs were euthanized after the last blood draw.

1.1.2. Lung cGMP levels

Unoperated ewes at mid-gestation were given either placebo or tadalafl at 2 mg/kg/day orally for seven days before lungs were procured from fetal lambs (n = 3 lambs/group) to assess levels of cyclic GMP (cGMP), measured with a commercially available competitive enzyme-linked immunoassay from Cayman Chemical (Ann Arbor, MI) according to the manufacturer’s protocol.

1.1.3. Lamb resuscitations

Diaphragmatic hernias were created in time-dated pregnant ewes at 75 days gestation. Postoperatively, pregnant ewes were randomized to receive either placebo (n = 7 ewes) or tadalafl at 75 days gestation (n = 8 ewes) orally. Unoperated twins, if present, served as controls. At 135 days gestation, ewes were anesthetized with ketamine, isoflurane, and intubated prior to laparotomy and hysterotomy. Polivinyl catheters were placed into an artery and vein in one hind leg and advanced into the descending aorta and inferior vena cava, respectively, in fetal lambs. A left thoracotomy was performed in the third intercostal space in the lambs. An ultrasonic flow probe (Transonics Systems, Ithaca, NY) was placed on the main pulmonary artery to measure pulmonary blood flow. Polivinyl catheters were placed in the main pulmonary artery to measure pulmonary artery pressures. The ductus arteriosus was isolated with a vessel loop, and the ribs were approximated. Lambs were intubated on placental circulation with a 4.5 mm cuffed endotracheal tube before the umbilical cord was cut. Lambs were mechanically ventilated and anesthetized with ketamine (0.3 mg/kg/min) and diazepam (0.002 mg/kg/min). Normothermia was maintained (38 °C) using a heated table, heating lamps and a makeshift incubator. Blood pressure and heart rate were measured continuously throughout the resuscitation. Arterial blood gases were drawn every 10 min throughout the 30 min resuscitation. Baseline hemodynamic measurements were obtained, and then again after the ductus arteriosus was ligated, inhaled nitric oxide (iNO) was turned on to 40 ppm, and then iNO was turned off. The lambs were euthanized with a lethal injection of sodium pentobarbital followed by bilateral thoracotomy as described in the NIH Guidelines for the Care and Use of Laboratory Animals. Fetal lung tissue was isolated for protein analysis. All protocols and procedures were approved by the Committee of Animal Research of the University of California, Davis and University of California, San Francisco. Lung tissue was collected for analysis.

1.1.4. Western blot analysis

Protein extracts from peripheral lung tissue were prepared using lysis buffer (50 mM Tris–HCl, pH 7.6, 0.5% Triton X-100, 20% glycerol) containing Halt™ protease and phosphatase inhibitor cocktail (Thermo Scientific, Rockford, IL). Protein concentration was determined using Pierce® BCA Protein Assay Kit (Thermo Scientific, Rockford, IL). Protein extracts (50 μg) were separated on NuPAGE 4–12% Bis–Tris gels (Invitrogen, Carlsbad, CA) and transferred to Immuno-Blot™ PVDF membranes (Biorad, Hercules, CA) using electrophoresis. PVDF membranes were blocked in 5% milk/TBST for 1 h, before overnight incubation with primary antibodies in 1% milk/TBST at 4 °C overnight. Blots were washed three times with TBST for ten minutes each time and then incubated with secondary antibody at room temperature in 1% milk/TBST for one hour. Membranes were washed three times with TBST before detection of HRP activity with Pierce® ECL Western Blotting Substrate (Thermo Scientific, Rockford, IL). Protein densitometry was determined using Image J (Bethesda, MD), with β-actin as a loading control (equivalent expression defined as 100%).

1.1.5. Western antibodies

Mouse anti-eNOS (1:1000) and mouse anti-PDE5 (1:1000) primary antibodies were purchased from BD Biosciences (San Jose, CA). Rabbit anti-β-actin (1:70,000) was purchased from Sigma-Aldrich (St. Louis, MO). Secondary antibodies: goat anti-mouse antibody (1:100) was conjugated with HRP (1:5000 for eNOS and PDE5, 1:50,000 for β-actin) and goat anti-rabbit antibody conjugated with HRP (1:15,000 for β-sGC) were purchased from Vector Laboratory (Burlingame, CA).

1.2. Statistics

Lung cGMP levels were compared using Student t-test. Lamb resuscitation data and protein expression were compared using a Two-way ANOVA to account for the “CDH vs Normal” and “Tadalafil vs Placebo” variables. Subgroup analysis was performed using Student t-test when Two-way ANOVA was significant. Repeated-measures ANOVA and post hoc analysis with Bonferroni Multiple Comparison Test were used to analyze pulmonary artery pressure and total pulmonary blood flow data. P < 0.05 was considered significant.

2. Results

2.1. Maternally-administered tadalafl crosses the placental barrier and affects the fetal lamb lung

We performed an initial pilot study to determine if tadalafl would cross the placental barrier. Tadalafil, dosed at 1 or 2 mg/kg/day, was orally administered to pregnant ewes (n = 1 per dosage group) for five days before blood was drawn at the fifth treatment and at 2, 4, 6, 8, and 24 h afterwards in maternal ewes. In fetal lambs, blood was drawn at the fifth treatment and at 4, 8, 12, 16, 20, and 24 h afterwards. Time points for blood draws differed between maternal ewes and fetal lambs because at certain time points, catheters would not draw back. Ewes in this experiment were euthanized after blood draws were completed because the fetal lambs died after their umbilical cords became entangled with the catheters used for blood draws. Tadalafil concentrations in maternal ewes peaked between 6 and 8 h after administration (Fig. 1). In the fetal lambs, there was a
steady state of tadalfil, with concentrations comparable to peak levels seen in the maternal ewe (Fig. 1). There was a proportional increase in serum tadalfil concentration with increases in tadalfil dosage.

2.2. Antenatal tadalfil normalizes expression of proteins in the cGMP pathway

To quantify expression of proteins in the cGMP pathway, we performed Western blotting on protein isolated from fetal lamb lungs (Fig. 2A). Expression of proteins in the cGMP pathway was normalized to β-actin expression. Normalized expression of eNOS was 82% ± 12% in Normal-Placebo, 61% ± 5% in CDH-Placebo, 116% ± 6% in Normal-Tadalafil, and 86% ± 8% in CDH-Tadalafil lambs (Fig. 2B, n = 3 for Normal-Placebo and CDH-Placebo, n = 2 for Normal-Tadalafil, and n = 5 for CDH-Tadalafil). Normalized eNOS expression was significantly decreased in CDH lambs compared to normal lambs (p = 0.0007), and treatment with tadalfil significantly increased eNOS expression (p = 0.0002). In a subgroup analysis, eNOS expression was significantly decreased in CDH-Placebo in comparison to normal (p = 0.06), but no significant difference between the CDH-Placebo and CDH-Tadalafil groups (p = ns).

Normalized expression of PDE5 was 77% ± 16% in Normal-Placebo, 64% ± 6% in CDH-Placebo, 70% ± 16% in Normal-Tadalafil, and 77% ± 16% in CDH-Tadalafil lambs (Fig. 2D). Both CDH and tadalfil did not have a significant effect on normalized PDE5 expression, p = ns.

2.3. Effects of antenatal tadalfil on body weight and lung weight

There was no significant difference in fetal lamb weight between groups (p = ns, Fig. 3A). Average lung weight to body weight ratio (LW:BW) is an indicator of lung hypoplasia, and was significantly lower in CDH lambs compared to normal (p = 0.007, Figure 3B), but tadalfil did not have a significant effect on LW:BW (p = ns). LW:BW was significantly lower in CDH-Placebo compared to Normal-Placebo lambs (p = 0.01) and in CDH-Tadalafil compared to Normal-Tadalafil (p = 0.03). There was no significant difference in LW:BW between the CDH-Placebo and CDH-Tadalafil groups (p = ns).

2.4. Both maximum PaO2 and average PaO2 are lower in CDH lambs

Both maximum PaO2 and average PaO2 were significantly lower in CDH lambs compared to normal (p = 0.0001 and 0.0005, respectively), but tadalfil did not have a significant effect on PaO2 (p = ns) (Fig. 3C).

2.5. Pulmonary hypertension in CDH lambs

As a measure of right ventricular hypertrophy, we divided the right ventricular weight (RV) by the left ventricular and septum weights (LV + Septum) to get the RV:LV + Septum ratio. There was no significant difference in RV:LV + Septum ratio between groups (p = ns, Fig. 4A).

Pulmonary artery pressure (PAP) was measured in fetal lambs during resuscitations. PAP was significantly different between groups by Repeated Measures ANOVA, p = 0.04 (Fig. 4B). PAP was significantly higher in the CDH-Placebo group compared to the Normal-Placebo group. However, there was no significant difference in PAP between the CDH-Placebo group and the CDH-Tadalafil group.

A flow probe was placed on the main pulmonary to quantify total pulmonary blood flow (QPA). QPA was significantly different between groups by Repeated-measures ANOVA, p < 0.0001 (Fig. 4C). Total pulmonary blood flow was significantly lower in the CDH-Placebo group compared to the Normal-Placebo Group. QPA was higher in both normal and CDH lambs that were treated with tadalfil compared to normal and CDH lambs treated with placebo. In addition, QPA was significantly higher in the CDH-Tadalafil group in comparison to the CDH-Placebo group in post-hoc analysis, and there was no significant difference in QPA between CDH-Tadalafil and Normal-Placebo.

3. Discussion

Congenital diaphragmatic hernia (CDH) is a common cause of persistent pulmonary hypertension in the newborn, resulting in right-to-left shunting, a significant preductal–post ductal saturation difference, and acute right heart failure [14,15]. Even infants with CDH who do not manifest clinically significant pulmonary hypertension have evidence of increased pulmonary vascular resistance on echocardiogram [14]. Pulmonary hypertension in CDH is due to a combination of increased pulmonary vascular hyperreactivity [3,9], increased muscularization of the pulmonary arterioles [5,6], and decreased size of the pulmonary vascular bed [4,6,11,13], and the severity of pulmonary hypertension remains a main determinant of survival for neonates with CDH.
Initially, pulmonary hypertension is managed with inhaled nitric oxide [15] and minimizing stimuli such as acidosis, hypoxemia, and hypercarbia. Patients with refractory pulmonary hypertension are resistant to inhaled nitric oxide and treated with extracorporeal membrane oxygenation, as well as endothelin antagonists, PDE5 inhibitors, prostacyclin, and prostaglandin E1 [15,16]. However, the vascular remodeling that contributes to pulmonary hypertension postnatally actually occurs antenatally, in utero [17]. Antenatal therapies designed to prevent vascular remodeling may be the key to improving outcomes for neonates with CDH.

PDE5 inhibitors are currently used to treat postnatal pulmonary hypertension in infants, but they have never been used antenatally in humans to decrease the severity of pulmonary hypertension in CDH. Luong et al. [18] published a study using antenatal sildenafil, a PDE5 inhibitor, in the teratogenic nitrofen rat model of CDH. Sildenafil was administered to pregnant rats through subcutaneous injection, which improved lung architecture and pulmonary vascular density, and also attenuated right ventricular hypertrophy in rat fetuses with nitrofen-induced CDH [18]. However, they were not able to assess the physiologic effects of antenatal maternally-administered PDE5 inhibitors on fetuses with CDH in vivo.

In our study, we analyzed the effects of antenatal maternally-administered PDE5 inhibitors in the well-established surgical fetal lamb model of CDH using the next generation of PDE5 inhibitors, tadalafil.

The half-life of tadalafil is approximately 17 h, whereas the half-life of sildenafil is between 3 and 5 h [19]. Tadalafil has a longer half-life than sildenafil and can be administered once daily, which will be more convenient for patients. Tadalafil is also more specific for PDE5, and theoretically, will have less potential for adverse effects in the fetus because it has less cross-reactivity with PDE6, which is expressed in the retina [19].

The pharmacokinetics of tadalafil in pregnancy is poorly understood. Before proceeding with our study, we confirmed that tadalafil, when administered orally to pregnant ewes, can cross the placental barrier. However, serum tadalafil levels were significantly lower in sheep in comparison to humans. We achieved serum tadalafil
concentrations of 45 ng/mL only after pregnant ewes were administered a dose of 2 mg/kg/day (approximately 150–200 mg/day). In contrast, serum tadalafl levels are approximately 600–800 ng/mL at a dosage of 40 mg/day in humans. We were initially concerned that serum tadalafl levels were significantly lower in sheep in comparison to humans at five times the dosage. However, Luong et al. [18] were able to demonstrate that sildenafil has a beneficial effect, despite the fact that metabolism of sildenafil in rats was 100 times that of humans. In our studies, cGMP levels were significantly elevated in fetal lamb lungs from pregnant ewes treated with 2 mg/kg/day of
to humans at five times the dosage. However, Luong et al. [18] were able to demonstrate that sildenafil has a beneficial effect, despite the fact that metabolism of sildenafil in rats was 100 times that of humans. In our studies, cGMP levels were significantly elevated in fetal lamb lungs from pregnant ewes treated with 2 mg/kg/day of

Fig. 3. Tadalafil does not affect intrauterine growth and we were able to produce physiologically significant lung hypoplasia in our fetal lamb model of CDH. (A) There was no significant difference in lamb weight between the groups. (B) Lung weight-to-body weight ratio (LW:BW) was significantly lower in CDH lambs in comparison to normal lambs, $p = 0.007$, and tadalafil did not affect LW:BW, $p = ns$. **LW:BW was significantly lower in CDH-Placebo in comparison to Normal-Placebo, $p = 0.01$, and also significantly lower in ***CDH-Tadalafil in comparison to Normal-Tadalafil, $p = 0.03$. There was no difference in LW:BW ratio between CDH-Placebo and CDH-Tadalafil. (C) *Average PaO2 was significantly lower in CDH in comparison to normal lambs, $p = 0.0005$, but tadalafil did not significantly increase average PaO2. **Average PaO2 was significantly lower in CDH-Placebo in comparison to Normal-Placebo, $p = 0.05$, but there was no significant difference in average PaO2 between CDH-Placebo and CDH-Tadalafil.

Fig. 4. Assessment of pulmonary hypertension in fetal lambs. (A) There was no significant difference in RV:LV + Septum ratio between groups. (B) PAP is significantly different by Repeated Measures ANOVA, $p = 0.04$. ***PAP is significantly higher in the CDH-Placebo group in comparison to the Normal-Placebo group by Bonferroni Multiple Comparisons Test, but there was no significant difference in PAP between the CDH-Placebo and CDH-Tadalafil group. (C) QPA is significantly different between groups by Repeated Measures ANOVA, $p < 0.0001$. *QPA was significantly lower in the CDH-Placebo group in comparison to the Normal-Placebo Group by Bonferroni Multiple Comparisons Test. **QPA was also significantly higher in the CDH-Tadalafil group in comparison to the CDH-Placebo group in post-hoc as well. There was no significant difference in QPA between the CDH-Tadalafil and Normal-Placebo groups.
tadalafil in comparison to those treated with placebo. Though we tried to dose tadalafl at 4 mg/kg/day (data not shown), cGMP levels in fetal lamb lungs were comparable to those dosed at 2 mg/kg/day. Therefore, tadalafl dosed at 2 mg/kg/day had the appropriate and intended end biochemical effect. Successful transition to extrauterine life depends on the ability of the pulmonary vasculature to decrease resistance within the first few minutes of life [6], and the cGMP pathway is only one of many biochemical pathways that mediate pulmonary vascular vasodilation. Nitric oxide can be delivered exogenously (inhaled) or produced endogenously in the vascular endothelium by endothelial nitric oxide synthase (eNOS). Nitric oxide can then diffuse into the smooth muscle cells to activate soluble guanylate cyclase to produce cGMP, which activates proteins downstream to cause smooth muscle relaxation [20]. Nitric oxide synthase expression is developmentally regulated and maximally expressed at late gestation in the fetal rat lung to optimize nitric oxide-mediated pulmonary vasodilatation at birth [21]. Unfortunately, many infants with CDH have pulmonary hypertension that is refractory to inhaled nitric oxide, which suggests that proteins in the cGMP pathway may have impaired expression or activity.

A study on human fetuses with lung hypoplasia reports that fetuses with CDH have a 75% decrease in eNOS expression by Western blotting [6,22], and eNOS expression was decreased in the nitrogen rat model of CDH [23]. Transgenic mice with knockout of the eNOS gene had increased pulmonary vascular resistance and increased muscularization of distal arterioles [24]. Other studies have shown that both PDE5 [25] and guanylate cyclase [25,26] activities are impaired in the fetal lamb model of CDH. In our study, we show that both eNOS and β-sGC expressions are decreased in CDH lambs in comparison to normal lambs, and that tadalafl significantly increased eNOS expression. There were a significant difference in eNOS expression between CDH-Placebo and CDH-Tadalafil groups, and no significant difference in expression between the Normal-Placebo and CDH-Tadalafil groups. Though tadalafl normalized eNOS expression in CDH lambs, it did not normalize β-sGC expression in CDH lambs. These results suggest that decreased nitric oxide production contributes to impaired pulmonary vascular reactivity in fetal lambs with CDH, and treatment with PDE5 inhibitors can normalize expression of eNOS.

Though maternally-administered tadalafl normalizes eNOS protein expression, it did not adversely affect fetal weight. There was no significant difference in average weight groups. Lung weight-to-body weight ratio (LW:BW) was significantly lower CDH lambs in comparison to normal lambs, but tadalafl did not have a significant effect on LW:BW in CDH lambs. In addition, CDH lambs had significantly lower maximum and average PaO2 in comparison to normal lambs. Though we did not see a significant improvement in PaO2 in the CDH-Tadalafil in comparison to the CDH-Placebo group, we were able to show significant differences in total pulmonary blood flow (QPA). Patients with CDH have significantly elevated PAP [14,27], but pulmonary blood flow is significantly lower in CDH in comparison to age-matched controls [27], which we were able to recapitulate in our fetal lamb model of diaphragmatic hernia. Tadalafil significantly improved QPA in fetal lambs with diaphragmatic hernia after maternal ewes were administered tadalafl orally. Previous studies in both sheep and rats have shown that increased pulmonary blood flow is associated with increased eNOS expression [28,29]. Though both of these studies were performed in animal shunt models created to induce pulmonary hypertension, the pathway to development of pulmonary hypertension is different in shunt physiology in comparison to CDH. Patients with significant shunt physiology can eventually develop pulmonary hypertension, whereas patients with CDH are already born with intrinsic pulmonary hypertension. Those with shunt physiology have elevated total pulmonary blood flow, whereas patients with CDH have decreased pulmonary blood flow. Therefore, we postulate that tadalafl, a PDE5 inhibitor, prevents the breakdown of cGMP, which leads to smooth muscle relaxation and hence, increased pulmonary blood flow. Increased eNOS expression in tadalafl-treated lambs may be an adaptive response of the pulmonary circulation in order to accommodate increase in pulmonary blood flow.

In summary, we have shown that antenatal maternally-administered tadalafl can cross the placental barrier in sheep and has an appropriate end biochemical effect in the fetal lamb lung. Fetal lambs with surgical diaphragmatic hernias have decreased expression of eNOS and soluble guanylate cyclase, and maternally-administered tadalafl significantly increases eNOS expression. Tadalafil does not have deleterious effects on intrauterine growth in fetal lambs, and significantly improves total pulmonary blood flow. Currently, maternally-administered medical therapies for fetal diseases are limited to short courses of steroids to promote fetal lung maturity and antiarrhythmics to treat fetal cardiac arrhythmias. While pharmacokinetics in pregnancy and safety must be clearly demonstrated, “preventative medicine” may take on a whole new meaning as we explore possibilities for prenatal medical therapies.

Acknowledgments

United Therapeutics donated tadalafl and limited funding for this project (DM), National Institutes of Health K08 HL092062 (DM), T32 2T32HD049303-06A1 (ES), and T32 GM008258 (SCC), as well as the UCSF Academic Senate Individual Investigator Grant (DM).

References

Discussion

Discussant: Dr. Brad Warner (St. Louis, MO): Congratulations, that is a beautiful study. I know there was a report of sildenafil given in the context of nitrofen in a diaphragmatic hernia model and that showed improved survival in that model. This actually just shows some of the signaling pathways but have you actually looked directly at whether there is an effect on the histology of the lungs or whether you have measured anything with regard to pulmonary hypertension in this lamb model?

Response: Dr. Eveline Shue: We haven’t had a chance to look at the histology yet but, near-term gestation we also performed resuscitations on these lambs. What we found is that there is a trend towards improved response to nitric oxide in the CDH lambs treated with tadalafil in comparison to those treated with placebo. We found a significant difference in total pulmonary blood flow in the CDH lambs treated with tadalafil, so there is no significant difference in total pulmonary blood flow in the CDH tadalafil group in comparison with normal placebo, but there is a significant decrease in total pulmonary blood flow in CDH placebo lambs.

Discussant: Dr. Patricia Donahoe, Boston, MA: Very nice study, and congratulations to your lab. If we are going to be successful in treating congenital diaphragmatic hernia you’d also have to have increased proliferation in growth of the lungs, so is there any effect of this therapy on lung growth per se or alveolization?

Response: Dr. Eveline Shue: We have looked at lung weight as well as lung weight to body weight ratio. We have proven that we have a physiologically significant lung hypoplasia in our CDH lambs. We have not shown a significant increase in lung growth or lung weight to body weight ratio in the CDH tadalafil group.