Differential Outcomes With Early and Late Repeat Transplantation in the Era of the Lung Allocation Score

Asishana A. Osho, MPH, Anthony W. Castleberry, MD, MMCi, Laurie D. Snyder, MD, MHS, Scott M. Palmer, MD, MHS, Asvin M. Ganapathi, MD, Sameer A. Hirji, BS, Shu S. Lin, MD, PhD, R. Duane Davis, MD, MBA, and Matthew G. Hartwig, MD

School of Medicine, Department of Surgery, and Department of Medicine, Duke University Medical Center, Durham, North Carolina

Background. Rates of repeat lung transplantation have increased since implementation of the lung allocation score (LAS). The purpose of this study is to compare survival between repeat (ReTx) and primary (LTx) lung transplant recipients in the LAS era.

Methods. We extracted data from 9,270 LTx and 456 ReTx recipients since LAS implementation, from the United Network for Organ Sharing registry. Propensity scoring was used to match ReTx and LTx recipients. Kaplan-Meier analysis compared survival between LTx and ReTx groups, with and without stratification based on time between first and second transplant. Multivariable Cox models estimated predictors of survival in lung recipients.

Results. Comparing all ReTx to LTx demonstrates a survival advantage for LTx that is diminished with propensity score matching ($p = 0.174$). Considering LTx against ReTx greater than 90 days after the initial procedure, there are similar survival results ($p < 0.067$). In contrast, ReTx within 90 days was associated with a survival disadvantage that persisted despite matching ($p = 0.011$). In ReTx populations, factors conferring worse outcomes include intensive care unit admission, unilateral transplantation, poor functional status, and primary graft dysfunction as the indication for retransplantation ($p < 0.05$).

Conclusions. Late lung retransplantation appears to be as beneficial as primary transplantation in propensity-matched patients. However, survival is severely diminished in those retransplanted less than 90 days after primary transplantation. The utility of early retransplantation needs to be carefully weighed in light of risks.

The incidence of repeat lung transplantation in the United States has increased over the last several years [1, 2] (Fig 1). This increase can be attributed to 2 factors that have greatly impacted the field of lung transplantation. First is the introduction of the lung allocation score (LAS) in May 2005 that prioritizes patients based on survival benefit and medical urgency [3]. The other driver is improvement in the practice of lung transplantation with accompanying increases in recipient survival. However, few studies have explored survival in recipients of lung retransplantation [1, 2, 4-9]. One of these, by Shuhaiber and colleagues [6] in the pre-LAS era, concluded that adjusting for confounders, purported differences in survival between repeat and primary lung transplantation, are nonsignificant.

The purpose of the current study was to review the national experience with lung retransplantation since LAS implementation. We evaluate survival for primary and repeat recipients with and without risk matching. We also analyze the importance of the duration between initial and repeat transplantation, hypothesizing that early retransplantation carries a greater mortality risk than late retransplantation. Lastly, we explore donor, recipient, and transplant factors in order to identify characteristics that promote longevity in lung retransplantation.

Material and Methods

Study Population

The study protocol was approved by the Duke University Institutional Review Board; individual consent was not needed. The United Network for Organ Sharing national database was queried for adult transplantations recorded from May 2005 (after LAS implementation) to December 2011 [10]. Patients were excluded if they underwent multorgan transplantation or were younger than 18 years of age. Analysis was limited to variables that were...
at least 80% populated, with most having available data for greater than 95% of patients.

Patients were categorized as primary (LTx) or repeat (ReTx) lung recipients. Additional cohorts were created for ReTx recipients receiving retransplantation greater (late-ReTx) or less than (early-ReTx) 90 days after initial lung transplantation [we defined early and late groups based on existing studies suggesting worse outcomes after retransplantation performed within 90 days [1, 11]. The primary study outcome was survival.

Propensity Matching
The ReTx recipients were matched 1:1 with LTx recipients based on the propensity score method as outlined by Austin [12], Rosenbaum and Rubin [13, 14], and D’Agostino and Rubin [15], and applied in lung transplantation by Shuhaiber and colleagues [6] and Castleberry and colleagues [16]. This method controls for differences in patient, donor, and transplant characteristics between cohorts. In this study, the propensity score itself estimates the probability of undergoing retransplantation. The score was calculated using a logistic regression model with covariate selection based on backward elimination. Variables included in the baseline model are noted in Table 1.

As previously established for dealing with missing data in propensity score analyses [6, 15, 16], an additional level was created for each categorical variable to indicate missing data. For continuous variables a value of 0 was imputed in empty fields, with creation of a new, binary variable indicating whether data were missing. Balance between matched cohorts was assessed using standardized differences with values below 0.2 indicating negligible differences in characteristics [17, 18].

Primary Analyses
Survival in matched and unmatched groups was compared using Kaplan-Meier, log-rank, and Cox regression methods. For matched samples, comparisons were performed using stratified analyses based on quartiles of the propensity score [19].

Risk matching and survival comparisons were repeated for retransplantations performed less than (early ReTx) or greater than 90 days (late ReTx) after the initial procedure. Further analyses compared ReTx recipients stratified into 3 groups based on time between initial and repeat transplantation: (1) < 90 days; (2) between 90 days and 2 years; and (3) greater than 2 years. Finally, we compared survival after lung retransplantation pre-LAS versus post-LAS implementation.

Secondary Analyses
Multivariable Cox regression models outlined predictors of survival after lung retransplantation. Models started out with the same variables from the propensity score analysis with final variable inclusion based on backward selection. A final multivariable model identified predictors of survival in the overall cohort of lung recipients. This model included a 3-level variable designating patients as LTx, early ReTx, or late ReTx.

Results
Patient Characteristics
A total of 9,726 patients met study criteria, including 456 ReTx (4.7%) and 9,270 LTx (95.3%) patients (Table 1). For the ReTx cohort, diagnosis was obliterator bronchiolitis in 53% (n = 241) and primary graft dysfunction (PGD) in 17% (n = 77) of cases. Median number of days between initial and repeat transplantation was 1,056 (interquartile range [IQR] 473 to 2,176). Compared with LTx patients, ReTx recipients were younger (median age 51, IQR 34 to 61 vs 58, IQR 49 to 64), more often had cystic fibrosis or bronchiectasis as the underlying diagnosis (29%, n = 130 vs 14%, n = 1,295), and had higher LAS (median 47, IQR 40 to 70 vs 39, IQR 34 to 48). Number of wait-list days was lower for ReTx
Table 1. Baseline Characteristics for Matched and Unmatched Groups of Primary and Repeat Lung Recipients

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total Sample</th>
<th>1:1 Matched Sample</th>
<th>p Value<sup>a</sup></th>
<th>Primary (n = 429)</th>
<th>Repeat (n = 429)</th>
<th>Stand. Diff.<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor age (years)</td>
<td>32 (21–46)</td>
<td>30 (21–45)</td>
<td>0.156</td>
<td>28 (20–46)</td>
<td>29 (21–45)</td>
<td>0.01</td>
</tr>
<tr>
<td>Donor BMI (kg/m²)</td>
<td>25 (22–28)</td>
<td>25 (22–28)</td>
<td>0.700</td>
<td>25 (22–28)</td>
<td>25 (22–28)</td>
<td>−0.02</td>
</tr>
<tr>
<td>Recipient age (years)</td>
<td>58 (49–64)</td>
<td>51 (34–61)</td>
<td><0.001<sup>c</sup></td>
<td>54 (31–62)</td>
<td>51 (36–61)</td>
<td>−0.01</td>
</tr>
<tr>
<td>Recipient BMI (kg/m²)</td>
<td>25 (21–29)</td>
<td>22 (19–26)</td>
<td><0.001<sup>c</sup></td>
<td>24 (19–28)</td>
<td>22 (19–26)</td>
<td>0.05</td>
</tr>
<tr>
<td>Wait list days</td>
<td>73 (22–229)</td>
<td>43 (12–125)</td>
<td><0.001<sup>c</sup></td>
<td>52 (12–178)</td>
<td>45 (12–129)</td>
<td>0.01</td>
</tr>
<tr>
<td>Lung allocation score</td>
<td>39 (34–48)</td>
<td>47 (40–70)</td>
<td><0.001<sup>c</sup></td>
<td>47 (37–85)</td>
<td>47 (40–67)</td>
<td>0.13</td>
</tr>
<tr>
<td>Ischemic time (hours)</td>
<td>4.8 (3.8–6.0)</td>
<td>4.8 (3.5–6.1)</td>
<td>0.873</td>
<td>4.9 (3.8–6.0)</td>
<td>4.8 (3.5–6.2)</td>
<td>0.03</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>0.8 (0.7–1.0)</td>
<td>1.1 (0.8–1.3)</td>
<td><0.001<sup>c</sup></td>
<td>0.8 (0.8–1.1)</td>
<td>1.0 (0.8–1.3)</td>
<td>−0.02</td>
</tr>
<tr>
<td>Days b/w transplants</td>
<td>NA</td>
<td>1,056 (473–2,176)</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Categoric covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donor race (Caucasian)</td>
<td>5,771 (0.62)</td>
<td>268 (0.59)</td>
<td>0.267</td>
<td>261 (0.61)</td>
<td>252 (0.59)</td>
<td>0.04</td>
</tr>
<tr>
<td>Donor sex (female)</td>
<td>3,719 (0.40)</td>
<td>197 (0.43)</td>
<td>0.190</td>
<td>153 (0.36)</td>
<td>183 (0.43)</td>
<td>−0.14</td>
</tr>
<tr>
<td>Donor cause of death</td>
<td>3,356 (0.36)</td>
<td>158 (0.35)</td>
<td>137 (0.32)</td>
<td>148 (0.35)</td>
<td>−0.06</td>
<td></td>
</tr>
<tr>
<td>CVA/stroke</td>
<td>4,432 (0.47)</td>
<td>234 (0.51)</td>
<td>216 (0.50)</td>
<td>224 (0.52)</td>
<td>−0.04</td>
<td></td>
</tr>
<tr>
<td>Head trauma</td>
<td>7,801 (0.84)</td>
<td>398 (0.87)</td>
<td>373 (0.87)</td>
<td>374 (0.87)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Recipient race: (Caucasian)</td>
<td>3,822 (0.41)</td>
<td>203 (0.45)</td>
<td>171 (0.40)</td>
<td>190 (0.44)</td>
<td>−0.08</td>
<td></td>
</tr>
<tr>
<td>Underlying diagnosis</td>
<td><0.001<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obstructive</td>
<td>2,997 (0.32)</td>
<td>120 (0.26)</td>
<td>101 (0.23)</td>
<td>114 (0.27)</td>
<td>−0.09</td>
<td></td>
</tr>
<tr>
<td>Restrictive</td>
<td>4,045 (0.44)</td>
<td>140 (0.31)</td>
<td>141 (0.32)</td>
<td>137 (0.32)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CF/bronchiectasis</td>
<td>1,295 (0.14)</td>
<td>130 (0.29)</td>
<td>120 (0.28)</td>
<td>118 (0.28)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>PPH</td>
<td>398 (0.04)</td>
<td>26 (0.06)</td>
<td>22 (0.05)</td>
<td>25 (0.06)</td>
<td>−0.04</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>535 (0.06)</td>
<td>40 (0.09)</td>
<td>45 (0.10)</td>
<td>35 (0.08)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Retransplant diagnosis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obliterative bronchiolitis</td>
<td>NA</td>
<td>241 (0.53)</td>
<td>NA</td>
<td>227 (0.53)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>PGD/acute rejection</td>
<td>77 (0.17)</td>
<td>72 (0.17)</td>
<td>72 (0.17)</td>
<td>72 (0.17)</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>138 (0.30)</td>
<td>130 (0.30)</td>
<td>130 (0.30)</td>
<td>130 (0.30)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CMV (positive)</td>
<td>5,056 (0.55)</td>
<td>289 (0.63)</td>
<td><0.001<sup>c</sup></td>
<td>267 (0.62)</td>
<td>270 (0.63)</td>
<td>−0.02</td>
</tr>
<tr>
<td>ABO match (level 1)</td>
<td>8,517 (0.91)</td>
<td>409 (0.90)</td>
<td>0.098</td>
<td>403 (0.94)</td>
<td>385 (0.90)</td>
<td>0.15</td>
</tr>
<tr>
<td>Medical condition:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilator</td>
<td>520 (0.06)</td>
<td>96 (0.21)</td>
<td><0.001<sup>c</sup></td>
<td>101 (0.24)</td>
<td>83 (0.19)</td>
<td>0.12</td>
</tr>
<tr>
<td>ICU</td>
<td>690 (0.07)</td>
<td>118 (0.26)</td>
<td><0.001<sup>c</sup></td>
<td>129 (0.30)</td>
<td>101 (0.24)</td>
<td>0.14</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>1,407 (0.15)</td>
<td>182 (0.40)</td>
<td><0.001<sup>c</sup></td>
<td>177 (0.41)</td>
<td>161 (0.38)</td>
<td>0.06</td>
</tr>
<tr>
<td>Procedure type (bilateral)</td>
<td>6,106 (0.66)</td>
<td>235 (0.52)</td>
<td><0.001<sup>c</sup></td>
<td>245 (0.57)</td>
<td>226 (0.53)</td>
<td>0.08</td>
</tr>
<tr>
<td>Diabetes (yes)</td>
<td>1,628 (0.18)</td>
<td>221 (0.48)</td>
<td><0.001<sup>c</sup></td>
<td>203 (0.47)</td>
<td>203 (0.47)</td>
<td>0.00</td>
</tr>
<tr>
<td>No limitation of ADLs</td>
<td>3,041 (0.33)</td>
<td>104 (0.23)</td>
<td><0.001<sup>c</sup></td>
<td>94 (0.22)</td>
<td>103 (0.24)</td>
<td>−0.05</td>
</tr>
<tr>
<td>Employed (yes)</td>
<td>856 (0.09)</td>
<td>18 (0.04)</td>
<td><0.001<sup>c</sup></td>
<td>22 (0.05)</td>
<td>17 (0.04)</td>
<td>0.05</td>
</tr>
<tr>
<td>IV drug treated infect. (Yes)</td>
<td>924 (0.10)</td>
<td>130 (0.29)</td>
<td><0.001<sup>c</sup></td>
<td>128 (0.30)</td>
<td>119 (0.28)</td>
<td>0.04</td>
</tr>
<tr>
<td>Payer (Medicare/Medicaid)</td>
<td>4,001 (0.43)</td>
<td>208 (0.45)</td>
<td>0.110</td>
<td>194 (0.45)</td>
<td>196 (0.46)</td>
<td>−0.02</td>
</tr>
</tbody>
</table>

^a Student t test for continuous variables; ^c ^b Standardized differences displayed below are estimated as the difference in the mean between the 2 groups being compared, divided by the square root of the pooled variance, with modification to reflection proportions for categoric variables. Values < 0.2 indicate negligible differences in values for the 2 groups. ^c Significant difference at the 5% level.

ADLs = activities of daily living; BMI = body mass index; CF = cystic fibrosis; CMV = cytomegalovirus; CVA = cerebrovascular accident; NA = not applicable; PGD = primary graft dysfunction; PPH = primary pulmonary hypertension.

Primary Analysis

Unadjusted analysis comparing unmatched cohorts identified increased mortality for ReTx recipients compared with LTx recipients (p < 0.001; HR = 1.69, 95% CI 1.47 to 1.95; Fig 2A). Conversely, analysis in the 1:1 matched sample demonstrated no significant differences (median 43, IQR 12 to 125 vs 73, 22 to 229). Prior to matching, a considerable degree of imbalance was observed between ReTx and LTx cohorts with significant differences in 5 of 8 continuous and 11 of 17 categoric variables. No statistically significant differences existed after matching.
differences in survival between ReTx and LTx populations ($p = 0.174$; HR = 1.16, 95% CI 0.94 to 1.43; Fig 2B). Sixty-four ReTx recipients received repeat transplantation within 90 days of the initial procedure, while 392 patients received repeat transplantation greater than 90 days afterward. Unadjusted Kaplan-Meier analysis comparing unmatched groups demonstrated decreased survival for both early-ReTx and late-ReTx compared with LTx recipients ($p < 0.001$, Fig 3A;B). After 1:1 matching, survival differences between LTx and ReTx persisted for early-ReTx ($p = 0.011$; HR = 2.02, 95% CI 1.09 to 3.71; Fig 3A), but did not reach statistical significance for late-ReTx ($p = 0.067$; HR = 1.23, 95% CI 0.97 to 1.55; Fig 3B).
Comparison after stratification into 3 groups for time between transplants demonstrated superior survival for patients receiving retransplant greater than 2 years after the first procedure (Fig 4). Compared with patients receiving retransplantation within 90 days, this difference achieved statistical significance ($p < 0.001$; HR = 0.42, 95% CI 0.28 to 0.62). Compared to patients receiving retransplantation between 90 days and 2 years after the initial procedure, there was a trend toward statistical significance, although it was not achieved ($p = 0.070$; HR = 0.75, 95% CI 0.55 to 1.03). Furthermore, analyses demonstrated improved survival for lung retransplantation performed in the LAS era compared with the pre-LAS era ($p = 0.002$; HR = 0.75, 95% CI 0.62 to 0.90; Fig 5).

Secondary Analysis
In the cohort of ReTx recipients, multivariable Cox-regression modeling identified preoperative intensive care unit (ICU) admission ($p < 0.001$; HR = 2.04, 95% CI 1.4 to 2.88), infection requiring intravenous antibiotics within the 2-week period before transplantation ($p = 0.003$; HR = 1.66, 95% CI 1.18 to 2.34) and unilateral retransplantation ($p = 0.048$; HR = 1.43, 95% CI 1.01 to 2.05) as factors that predict increased mortality. Additionally, induction for ReTx predicted outcomes, with worse survival for primary graft dysfunction compared with bronchiolitis obliterans syndrome ($p = 0.0127$; HR = 1.63, 95% CI 1.11 to 2.38).

Looking broadly at the overall cohort of lung recipients, analyses demonstrated worse survival for early-ReTx compared with first-time ($p < 0.001$, HR = 1.97, 95% CI 1.37 to 2.84) or late-ReTx ($p = 0.023$, HR = 1.58, 95% CI 1.06 to 2.34). Other factors associated with worse survival included elevated serum creatinine ($p < 0.001$, HR [per unit increase in creatinine] = 1.12, 95% CI 1.05 to 1.18), pretransplant ICU admission ($p < 0.001$; HR = 1.64, 95% CI 1.37 to 1.96), pretransplant hospital admission ($p = 0.025$, HR = 1.20, 95% CI 1.02 to 1.41), unilateral lung transplantation ($p < 0.001$, HR = 1.23, 95% CI 1.13 to 1.35), and limitations in performing activities of daily living (ADLs) ($p = 0.014$, HR = 1.12, 95% CI 1.02 to 1.23).

Comment
Repeat lung transplantation has become more common in recent years, making up increasingly larger proportions of the national experience with lung transplantation. In this study we report a survival disadvantage for repeat versus primary lung transplantation in the LAS era that is diminished after propensity-score matching to control for confounders. In other words, retransplantation may be as beneficial as primary lung transplantation in risk-matched patients. We show, however, that this post-matching equivalence in survival is not applicable across the entire population of retransplant recipients. Patients receiving organs shortly after primary transplantation are at increased risk for mortality, even after risk adjustment. Additionally, we identified other predictors of mortality in repeat transplantation, including ICU admission, infection requiring intravenous antibiotics, procedure type, indication for surgery, and functional status. Altogether, these findings provide guidance for the selection of patients for repeat lung transplantation.

Study findings of comparable survival in risk-matched cohorts of repeat and primary lung recipients are consistent with existing literature. In an analysis of pre-LAS transplantations, Shuhaiber and colleagues [6] demonstrated that controlling for confounders, survival differences between primary and repeat transplant recipients are insignificant. Authors also observed that functional status and serum creatinine were predictors of survival in retransplantation. Other studies have identified predictors of mortality in lung retransplantation. Kilic and colleagues [5] demonstrated that mortality is highest in recipients with total functional need based on the Karnofsky scale. Aigner and colleagues [9] reported that the indication for retransplantation (PGD/bronchiolitis...
obliterans syndrome (BOS)) dictates patterns of survival. Others report increased mortality for early lung retransplantation, with the definition of “early” ranging from 90 days to 2 years, in various analyses [11, 20, 21].

In the current study, providing the first evaluation of survival in patients receiving retransplantation in the LAS era, our data confirm that patients receiving lung retransplantation continue to experience reasonable survival compared with risk-matched first-time recipients. Given LAS era increases in the rate of lung retransplantation, this work provides an important update on the topic. Additionally, our work represents the first, risk-matched evaluation of survival in lung retransplantation based on the duration of time elapsed after the initial procedure. Our finding of a persistent survival disadvantage with early retransplantation despite matching provides confirmation of previously raised anecdotal concerns in the field about the viability of retransplantation performed shortly after the initial procedure. Results highlight the importance of careful recipient evaluation for prospects for long-term survival before proceeding with early retransplantation. At our center, retransplantation is considered on an individual case basis. Programmatically, we avoid redo lung transplantation in the elderly (over 60 to 65 years). Also, due to our center’s experience, as well as findings from this current analysis, we avoid early retransplantation unless the patient demonstrates adequate function of other organs and the ability to perform active rehabilitation post-transplant.

Consistent with previous studies, preoperative functional status (hospitalization, ICU admission, or independence for ADLs) and indication for retransplantation (PGD/BOS) were identified as predictors of survival after lung retransplantation [5, 6, 20]. The finding of differential survival by indication for retransplantation is reinforced by our analysis with stratification into 3 groups by time between initial and repeat transplantation. These groups likely represent diagnosis categories for PGD (time < 90 days), early BOS (90 days < time < 2 years), and late BOS (time > 2 years). With such differing survival profiles, outcomes in these groups are likely determined based on varying predictive factors, an area of exploration for future work. It is important to note that in clinical practice, the specific indication for retransplantation is often unclear, justifying risk stratification based on time since initial transplantation, in addition to suspected reason for graft failure.

In contrast to previous studies, serum creatinine was not found to be a predictor of survival in retransplantation [2, 6]. It was, however, a predictor of survival in the entire cohort of lung recipients. One potential explanation for this is the exposure of transplant recipients to calcineurin inhibitors after their initial operation. Having already suffered some degree of renal deterioration, the impact of these medications on creatinine may have already been accounted for prior to retransplantation. Therefore, the predictive capabilities of creatinine on survival in retransplant recipients will likely be blunted or nonexistent. Notwithstanding, the effect of creatinine on survival after lung retransplantation remains an area of priority for future investigations.

Implications of our findings to lung transplantation policy and practice are manifold. Results from the primary analysis confirm that lung retransplantation is a viable therapy for end-stage lung disease, conferring a comparable survival benefit to primary transplantation in appropriately selected patients. Temporal comparisons demonstrate improved survival after lung retransplantation since LAS implementation. This undoubtedly reflects improvements in the practice of lung transplantation, but it likely also reflects optimized candidate selection with the use of the lung allocation score. An important observation from our study, based on imbalance in patient characteristics, is that the average candidate for retransplantation is in worse medical condition than the average candidate for primary lung transplantation. However, we do not believe that this observation detracts from our findings. On the contrary, we believe that it strengthens the assertion that careful preparation is necessary prior to retransplantation in high-risk candidates.

Results from our secondary analysis provide further guidance for the practice of lung retransplantation. Analyses suggest that bilateral procedures should be performed, where possible, and that adequate attempts be made to completely treat systemic infections before surgery. Likewise, retransplantation from an ICU setting or in patients with exceptionally poor functional status carries excessive risk and should be avoided where possible.

Any analysis of lung retransplantation is incomplete without some consideration of the ethics of allocating a second lung to one individual, while others wait for the first one. Many studies have attempted to tackle this dilemma which measures the needs of the individual patient against the prospects of maximizing the distribution of available lungs [1, 6, 22–24]. While there is no consensus on the most ethically appropriate allocation algorithm for retransplantation, much work has gone into mitigating the problem by increasing organ availability and clarifying the characteristics of the ideal retransplant candidate. Our work falls in this latter category as we contribute to outlining the factors that improve outcomes in lung retransplantation. Based on our results the ideal candidate for retransplantation is at least 90 days out from the initial procedure and has enjoyed some postoperative functional recovery (ideally out of the ICU or hospital with some ability to perform ADLs).

An important limitation of our study is that we only consider patients who ultimately received organs. Transplant candidates who did not make it to listing provided a wealth of information that could contribute to our understanding of practice patterns in the field. Our inability to access this information limits the potential of our analyses. A second limitation exists in the retrospective design of our study which comes with the challenges associated with non-prospective, nonrandomized analyses. Our statistical analysis with propensity-score matching and adjustment for potential confounders begins to address this limitation, albeit imperfectly given the possible existence of meaningful confounders that are not available to us. A final limitation is related to our use of the propensity score method which results in lower sample...
size. Time-based differences were robust despite identical modeling applied to both early and late retransplant co-
horts, providing some validation of study findings.

In conclusion, when performed in appropriately selected
patients, lung retransplantation in the LAS era continues to
provide survival benefit that is comparable with that derived
from primary lung transplantation. Candidates for
retransplantation earlier than 90 days after initial lung
transplantation are at increased risk for adverse outcomes,
even after controlling for other confounders. These patients
require special evaluation before undergoing the retrans-
plant operation. Several other factors contribute to deter-
mining outcomes in retransplantation including functional
status, transplant type, serious infection, and indication for
retransplantation. Appropriate candidate selection for
retransplantation can be achieved by optimizing these fac-
tors while balancing the need for retransplantation as a
therapy for recurrent end-stage lung disease against the
desire to distribute scarce lungs as “justly” as possible.

This project was funded primarily by the Bollinger Scholarship
Committee within the department of Surgery at the Duke Uni-
versity Medical Center. M.G.H. is supported in part by grant
U01-HL088953 from the National Institutes of Health Cardio-
thoracic Surgical Trials Network. Authors have complete au-
tonomy for data collection, analysis and interpretation, as well as
full rights to approve study publication. Authors have no other
relevant financial or industry related disclosures.

References
367–77.
lung retransplantation in the modern era. Am J Respir Crit
3. Tsuang WM, Vock DM, Finlen Copeland CA, Lederer DJ,
Palmer SM. An acute change in lung allocation score and
survival after lung transplantation: a cohort study. Ann
4. Minami M, Okamura M. Lung retransplantation; cadaveric
5. Klic A, Beaty CA, Merlo CA, Conte JV, Shah AS. Functional
status is highly predictive of outcomes after redo lung
transplantation: an analysis of 390 cases in the modern era.
mary and repeat lung transplantation in the United States.
plantation in paediatric patients: a justified therapeutic op-
8. Scully BB, Zafar F, Schecter MG, et al. Lung retrans-
plantation in children: appropriate when selectively applied.
plantation: is it worth the effort? A long-term analysis of 46
10. Hook J, Lederer DJ. Selecting lung transplant candidates:
where do current guidelines fall short? Expert Rev Respir
11. Schäfers HJ, Hausen B, Wahlers T, Fieguth HG, Jurmann M,
Borst HG. Retransplantation of the lung. A single center
12. Austin PC. A tutorial and case study in propensity score
analysis: an application to estimating the effect of in-hospital
smoking cessation counseling on mortality. Multivariate
13. Rosenbaum P, Rubin D. Reducing bias in observational
studies using subclassification on the propensity score. J Am
14. Rosenbaum P, Rubin D. Constructing a control group using
multivariate matched sampling methods that incorporate
scores with partially missing data. J Am Stat Assoc
allografts from brain death donors after cardiopulmonary
arrest and resuscitation. Am J Respir Crit Care Med
2013;188:466–73.
17. Yang D, Dalton J. A unified approach to measuring the effect
size between two groups using SAS ®. SAS Global Forum
2012 Statistics and Data Analysis Paper 335-2012.
18. Austin PC. Using the standardized difference to compare the
prevalence of a binary variable between two group in
observational research. Commum Stat Simulation Comput
Analysis of clinical trials using SAS: a practical guide. Cary,
plantation: predictors of graft function and survival in 230
21. Al-Naamani N, Maarouf OH, Wilt JS, et al. The modifi-
cation of diet in renal disease (MDRD) and the prediction of kidney
outcomes after lung transplantation. J Heart Lung Transplant
22. Kotloff RM. Lung retransplantation: all for one or one for all?
23. Mentzer SJ, Reilly JJ, Caplan AL, Sugarbaker DJ. Ethical
considerations in lung retransplantation. J Heart Lung
24. Andrews TD. Restarting the clock…again: ethical considera-

DISCUSSION

DR CHRISTIAN BERMUDEZ (Pittsburgh, PA): Very nice pre-
sentation, by the way.

The title of the abstract is Differential Survival for Early and
Late Lung Retransplantation Since Implementation of the Lung
Allocation Score.

We do a number of transplants a year, and it is very rare to do
a transplant within three months. I would say that if I do a
transplant within three months, most of the time it is due to
primary graph dysfunction.

We are really interested in knowing what happened a year or
two after those transplants in high risk. So I would have named
the paper, A Retransplantation for Primary Graph Dysfunction
probably, and then do the analysis.

First of all, I was surprised to see no difference in terms of
mechanical ventilation within the two groups.

One of the things that we have learned lately, and we just
reviewed the data, is that patients that go to retransplant on
mechanical ventilation do very poorly.
So the first question is, the number of patients on mechanical ventilation, and I am surprised at the lower rate of patients on mechanical ventilation, is would you consider to change the title to “Primary Graph Dysfunction”? I want to understand better why they were transplanted so early. For me, that is primary graph dysfunction until proven otherwise.

DR OSHO: I think that is an excellent point. We started looking at the retransplantation group as a whole group, and noticed that there are really two very different populations in the early and the late.

I may have just rushed over this slide, and that is why the difference was not noticed, but right there, there is a difference. The patients in the retransplantation group generally are on the ventilator longer. I have not reported the breakdown of the data for early versus late retransplantation but we do have a higher incidence ventilator requirement for early retransplantation.

DR BERMUDEZ: You are comparing the primary, but you do not do the breakdown.

DR OSHO: I have not reported those numbers here, but there is a difference in ventilator use for early versus late retransplantation. The early repeat patients are more often on ventilators than the late ones.

DR BERMUDEZ: And I think that you have your answer why the mortality is so high in the early, because they are sicker patients.

DR OSHO: Yes. And that ultimately came out of the model as a significant predictor. There is a significant degree of colinearity between ICU [intensive care unit] admission and ventilator use, which is why we show ICU admission here. But if you take ICU admission out of the model, ventilator use comes out as a significant predictor.

So we picked one to put up here, but you are absolutely right, that ventilator status does predict outcomes.

DR BERMUDEZ: Thank you very much. Congratulations.

DR YOSHIYA TOYODA (Philadelphia, PA): I am sure many surgeons have experiences, but I had a patient, we did a single-lung transplant for IPF, primary graft failure, we put her on ECMO [extracorporeal membrane oxygenation] and then we did a double-lung transplant about four weeks later. She is surviving more than six years now.

So I think at the time of redo, if the patient has renal failure or other organ dysfunction, maybe that is more important, rather than just the time. That is my impression.

And another question is, did you differentiate contralateral single lung or the ipsilateral single lung, or the double in the redo group? Did you differentiate?

DR OSHO: What we did do is create a variable that identified four different categories based on what lung patients received for the first or for the second procedure, and included that in the model. That four-level variable was not a significant predictor of outcomes.

DR SUDISH MURTHY (Cleveland, OH): There are some ethical issues that I am sure some people are thinking about, and one thing that jumps to mind is are we making the same mistake twice? If you look at who is retransplanted, you probably find the sickest patients in the primary group that undoubtedly did poorly. So now those people who remain in the primary group are bypassed again to allow for a second transplant in a population of patients who will have worse survival, and they may not even get their first shot. Who should we use these limited organs on?

It opens up an entire can of worms about the ethics of retransplantation or transplanting patients that are very, very ill. But it is something that I think we have to think about, given organ limitations.

DR OSHO: We have a slide right at the end which was prepared in anticipating of this issue. I agree that it is something to think about seriously.

The question is a good one. And one issue is that certain categories of patients who are receiving first-time transplants look very much like repeat transplant recipients.

Take IPF [idiopathic pulmonary fibrosis], for example. Their survival curves look very much like repeat transplant recipients. And the question becomes, do we disqualify that entire diagnosis category from receiving primary lung transplantation because they do not do as well? And it is one that does not have a straight answer, but definitely one to think about very heavily.

I think ultimately the work that we are doing with expanding the donor pool, to make sure that we use more organs and use them better, will help to improve these issues.

But again, you are absolutely right, that the ethics are something that we need to keep thinking about.

DR MURTHY: Thank you.