The Effect of Modified Blalock-Taussig Shunt Size and Coarctation Severity on Coronary Perfusion After the Norwood Operation

Chiara Corsini, PhD, Giovanni Biglino, PhD, Silvia Schievano, PhD, Tain-Yen Hsia, MD, Francesco Migliavacca, PhD, Giancarlo Pennati, PhD, and Andrew M. Taylor, MD, for the MOCHA Collaborative Group

Laboratory of Biological Structure Mechanics, Politecnico di Milano, Milan, Italy, and Centre for Cardiovascular Imaging, UCL Institute of Cardiovascular Science, and Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom

Background. The size of the modified Blalock-Taussig shunt and the additional presence of aortic coarctation can affect the hemodynamics of the Norwood physiology. Multiscale modeling was used to gather insight into the effects of these variables, in particular on coronary perfusion.

Methods. A model was reconstructed from cardiac magnetic resonance imaging data of a representative patient, and then simplified with computer-aided design software. Changes were systematically imposed to the semi-idealized three-dimensional model, resulting in a family of nine models (3-, 3.5-, and 4-mm shunt diameter; 0%, 60%, and 90% coarctation severity). Each model was coupled to a lumped parameter network representing the remainder of the circulation to run multiscale simulations. Simulations were repeated including the effect of preserved cerebral perfusion.

Results. The concomitant presence of a large shunt and tight coarctation was detrimental in terms of coronary perfusion (13.4% maximal reduction, 1.07 versus 0.927 mL/s) and oxygen delivery (29% maximum reduction, 422 versus 300 mL · min⁻¹ · m⁻²). A variation in the ratio of pulmonary to systemic blood flow from 0.9 to 1.6 also indicated a “stealing” phenomenon to the detriment of the coronary circulation. A difference could be further appreciated in the computational ventricular pressure-volume loops, with augmented systolic pressures and decreased stroke volumes for tighter coarctation. Accounting for constant cerebral perfusion did not produce substantially different results.

Conclusions. Multiscale simulations performed in a parametric fashion revealed a reduction in coronary perfusion in the presence of a large modified Blalock-Taussig shunt and severe coarctation in Norwood patients.

The Norwood procedure, introduced in 1980 for first-stage palliation of hypoplastic left heart syndrome (HLHS) a few days after birth, involves surgical enlargement of the hypoplastic ascending aorta and placement of a shunt to provide a source of pulmonary blood flow [1]. Given the complex arrangement resulting from the operation, and the intricacy inherent to single-ventricle physiology, observations on the components that can affect this clinical scenario had been made already in the 1980s. One paper, overtly subtitled *The Importance of Coarctation and Shunt Size*, concluded that a more profound understanding of both the pathologic anatomy and the physiology of this condition is essential to obtaining better surgical results [2].

Focusing on the Norwood procedure with a modified Blalock-Taussig (mBT) shunt [3], consensus on optimal shunt size has not been reached. One study observed better hemodynamics with less need for inotropic support early after stage 1 palliation with a larger mBT shunt [4]. Data from another study instead indicated that shunt size does not affect short-term outcomes, with bigger shunt size nevertheless leading to better growth of branch pulmonary arteries [5], although it is also known that effective overshunting can occur with larger shunts and this can be associated with significant morbidity and mortality [6].

An additional complication in this context can be represented by the presence of aortic coarctation. Coarctation in the preductal position in HLHS has been suggested to be caused by the extension of ductal tissue [7]. Recurrent coarctation after stage 1 palliation has been indicated as deleterious, and such recurrent aortic arch obstruction has been associated with compromised right ventricular systolic function at the second stage of palliation [8].

Understanding the effect of mBT shunt size and coarctation severity is therefore of great importance within the context of HLHS surgical palliation, and one...
approach to gather further insight into these variables is represented by computational modeling. A study using multiscale modeling [9] to investigate optimization of shunt placement indicated that a smaller shunt diameter with distal shunt-to-brachiocephalic anastomosis is optimal for systemic oxygen delivery, whereas a more proximal anastomosis is optimal for coronary oxygen delivery, relating coronary artery flow directly to shunt position [10]. Computational modeling has also been used successfully to study the hybrid Norwood [11], highlighting that “retrograde aortic arch hypoplasia or obstruction can lead to suboptimal cerebral and coronary perfusion” [12].

Computational techniques can provide easy access into quantities that can be difficult to measure in vivo, such as coronary perfusion, and offer a way to tackle systematically the problem of the concomitant presence of aortic coarctation and mBT shunt in palliated HLHS. This study thus aims to take advantage of a multiscale modeling strategy to gather insight into the effects of different shunt sizes and coarctation severity on single-ventricle physiology after the Norwood procedure.

Material and Methods

Anatomic Models

A patient with an mBT shunt undergoing second-stage palliation of HLHS was recruited to the Medical University of South Carolina (Charleston, SC). The study was approved by the local institutional review board. Cardiovascular magnetic resonance imaging was performed at 5 months (body surface area [BSA] = 0.33 m²) before second-stage surgery. The contrast-enhanced, three-dimensional (3D) cardiovascular magnetic resonance dataset was processed to generate an anatomic 3D model (Mimics, Materialise, Leuven, Belgium; see Schievano and associates [13]; Fig 1). The latter was used as the baseline to create an idealized model for this study by means of computer-aided design software (Rhinoceros 3.0, McNeel, Seattle, WA) to control more carefully the caliber of the shunt and the degree of aortic coarctation. Changes of mBT shunt size (3.0-, 3.5-, and 4.0-mm internal diameter) and coarctation severity (0%, about 60%, and 90% lumen reduction, corresponding to 7-, 4.6-, and 2.3-mm isthmus diameter) were implemented in the simplified geometry, thus generating a family of nine models (Fig 2). The choice of coarctation severity was such that the BSA-adjusted smallest aortic cross-section would be less than 56 mm²/m² in both cases, this value having been shown to relate to a considerable gradient (>20 mm Hg) across the narrowing [14]. Also, in both cases the coarctation index [15] was less than 0.7, which is a parameter considered indicative for recurrent coarctation, as is a maximal instantaneous pressure gradient of greater than 30 mm Hg [15].

Effectively, the only variations among the different 3D models were exclusively the mBT shunt and the coarctation, ensuring for a controlled environment for the simulations. It is worthwhile noting that the Damus-Kaye-Stansel anastomosis present in this patient was used to account for the coronary circulation in the idealized model.

The 3D models were discretized using preprocessing software Gambit 2.3.16 (ANSYS Inc, Canonsburg, PA). The mesh density was selected after appropriate sensitivity analysis, ie, progressively doubling the number of elements and ensuring that differences in flow and pressure mean values did not exceed 4%, resulting in approximately 230,000 four-node tetrahedral elements for all 3D models.

Multiscale Modeling

Each 3D model was coupled with a lumped parameter network (LPN). Coupling between the 3D domain and LPN was accomplished by means of interface conditions [9]. The LPN represented the global circulation, comprising five subsystems, ie, heart, upper body and lower body systemic circulations, pulmonary circulation, and coronary circulation [16–18]. The systemic and pulmonary vascular subsystems were, in turn, divided into arterial, capillary, and venous compartments, whose generic description consisted of a linear viscous resistance, constant compliance, and inertance. Time-varying elastances were used to mimic the active and passive behavior of the cardiac chambers, ie, two atria and the single ventricle. Nonlinear resistances simulated the
CONGENITAL HEART

was assumed to be an incompressible Newtonian fluid with density and dynamic viscosity equal to 1,060 kg/m3 and 0.005 kg · m$^{-1}$ · s$^{-1}$, respectively, as previously assumed [16].

Simulations

Pulsatile simulations were run using ANSYS Fluent (ANSYS Inc). The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) scheme with second-order spatial discretization for momentum and pressure and the first-order implicit transient formulation was chosen to solve the Navier-Stokes equations in the 3D domain. The LPN ordinary differential equations were integrated using the explicit Euler time-stepping scheme. Six cardiac cycles were simulated with a time step of 0.1 milliseconds for each multiscale model to reach cyclic repeatability of the solution. Results from the last cycle were used in the analysis. The average execution time was about 2 hours per cycle, using two parallel cluster computer nodes, each with two Quad-Core Intel Xeon E5620 processors.

The first tested model had a 3.5-mm mBT shunt and no aortic coarctation. Results from this simulation, in particular pressure and flow tracings at different locations, were compared with clinical data from 5 Norwood patients from the MOCHA network (unpublished data) to ensure that simulation results were realistic for this patient population. Table 1 summarizes the patients’ hemodynamic data as well as the time-averaged values of the modeling results. The BSA, SVR, and PVR were used as input parameters, whereas the other data were used for verification of the model.

After this verification, hemodynamic results were compared for the nine anatomic models. The main outputs of interest in this case were cardiac output, pulmonary flow (Qp) and the ratio between pulmonary and systemic blood flow (Qp/Qs), cerebral perfusion, and coronary perfusion. Systemic oxygen delivery (SO2D) and arterial and mixed venous blood oxygen saturations (SatART and SatVEN) were obtained from the oxygen mass balance written for the systemic and pulmonary circulations in stage 1 univentricular arrangement [17]. Briefly, assuming that oxygen consumption (O_2C) in the systemic organs and tissues equals oxygen uptake in the lungs (156.84 mL O$_2$ · min$^{-1}$ · m$^{-2}$) and pulmonary vein

Table 1. Comparison Between the Baseline Model (3.5-mm Modified Blalock-Taussig Shunt, No Aortic Coarctation) and Clinical Values From 5 Patients With Same Characteristics Recruited Within the MOCHA Group (Unpublished Data)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA (m2)</td>
<td>0.33</td>
<td>0.30 ± 0.04</td>
<td>0.26–0.34</td>
</tr>
<tr>
<td>SVR (WU m2)</td>
<td>21.4</td>
<td>20.1 ± 9.3</td>
<td>13.3–35</td>
</tr>
<tr>
<td>PVR (WU m2)</td>
<td>3.63</td>
<td>2.75 ± 0.81</td>
<td>1.35–3.4</td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO (mL/s)</td>
<td>30.3</td>
<td>27.4 ± 4.1</td>
<td>21–31</td>
</tr>
<tr>
<td>Q$_{DAo}$ (mL/s)</td>
<td>6.7</td>
<td>4.7 ± 1.2</td>
<td>3–6</td>
</tr>
<tr>
<td>Q$_p$ (mL/s)</td>
<td>16.5</td>
<td>14.1 ± 4.2</td>
<td>9.7–20</td>
</tr>
<tr>
<td>P$_{Ao}$ (mm Hg)</td>
<td>62</td>
<td>56 ± 9</td>
<td>51–72</td>
</tr>
<tr>
<td>P$_{PA}$ (mm Hg)</td>
<td>15</td>
<td>13 ± 2</td>
<td>11–16</td>
</tr>
<tr>
<td>EDV (mL)</td>
<td>32</td>
<td>31 ± 3</td>
<td>29–35</td>
</tr>
<tr>
<td>ESV (mL)</td>
<td>17</td>
<td>14 ± 3</td>
<td>10–18</td>
</tr>
</tbody>
</table>

BSA = body surface area; CO = cardiac output; EDV = end-diastolic volume; ESV = end-systolic volume; MOCHA = Modeling of Congenital Hearts Alliance; P$_{Ao}$ = aortic pressure; PVR = pulmonary vascular resistance; Q$_p$ = pulmonary flow; Q$_s$ = systemic flow; SVR = systemic vascular resistance.

Fig 2. Simplified model of stage 1 anatomy, highlighting variations in modified Blalock-Taussig shunt diameter (top, zoom) and degree of aortic coarctation (bottom, zoom). The arrows indicate the shunt (top) and the region of the aorta where the coarctation is created, past the left subclavian artery (bottom).
saturation equals 98%, \(SO_2D \) (mL O\(_2\) \(\cdot \) min\(^{-1}\) \(\cdot \) m\(^{-2}\)) was calculated as follows:

\[
SO_2D = \frac{Q_s \cdot C_{artO_2}}{BSA}
\]

(1)

with \(Q_s \) = systemic flow rate, and \(C_{artO_2} \) = oxygen arterial content.

Then, assuming a hemoglobin content (\(CHb \)) equal to 16.52 g/dL, and oxygen binding capacity of hemoglobin (\(HbO_2 \)) of 1.34 mL O\(_2\)/g, SatART and SatVEN (%) were calculated as follows:

\[
SatART = \frac{SO_2D \cdot BSA}{Q_s \cdot CHb \cdot HbO_2} \cdot 100
\]

(2)

\[
SatVEN = SatART - \frac{O_2C \cdot BSA}{Q_s \cdot CHb \cdot HbO_2} \cdot 100
\]

(3)

Finally, all simulations were repeated maintaining cerebral blood flow constant with respect to the best-case scenario (ie, 3-mm shunt, no coarctation). This was achieved by adjusting upper body resistance to simulate brain vasodilation. In this case, the value of brain resistance (\(R_{BR} \)) was assumed as \(R_{BR} = 0.78 \cdot R_{BR} \). This additional scenario was intended to broadly simulate baroreceptor response, in which brain perfusion is likely to be preserved. All settings and outcomes were the same as those described above.

Results

Comparison between the results from the model with the 3.5-mm mBT shunt and no coarctation with clinical data revealed that the model operated in a range of pressure and flow values in agreement with in vivo values (Table 1). Considering also the variability among different clinical cases, these data confirmed that the model is realistic and representative of Norwood patients, therefore supporting the reliability and relevance of the outcomes of the following simulations. Hemodynamic signals for this model are shown in Figure 3. The realistic nature of the coronary flow signal was verified, both in terms of its mean value and of the shape of the signal—including a small amount of retrograde flow—based on reference values and data from the literature [20, 21].

Results of the nine simulations with all combinations of mBT shunt size and isthmus diameter revealed that the concomitant presence of a large shunt and tight coarctation is detrimental in terms of coronary perfusion (up to 13.4% reduction, 1.07 mL/s versus 0.927 mL/s). All simulation outcomes are summarized in Figure 4. A reduction in cardiac output with increasing coarctation severity was also observed, as well as a reduction in oxygen delivery. A difference could also be appreciated in terms of the shape of the computational ventricular pressure-volume loops (Fig 5), with augmented systolic pressures and decreased stroke volumes for tighter coarctation.

Additional simulations accounting for constant cerebral perfusion did not produce substantially different results, with similar variations in cardiac output, coronary perfusion, and \(Q_P \) to those observed in the previous case. This is reported in Table 2, which shows the comparison between the best-case scenario (3-mm shunt, no coarctation) and the worst-case scenario (4-mm shunt, 90% coarctation), including simulations of brain vasodilation,
with the best- and worst-case scenarios defined on the basis of the previous set of simulations. An additional interesting difference between these two extreme cases is a difference in Q_P/Q_S, which increases from 0.9 to 1.5 or 1.6 as the shunt size and the coarctation severity also increase. This indicates the presence of a stealing phenomenon, likely to the detriment of the coronary circulation.

Comment

The physiology between first and second stages of palliation of HLHS is a complex arrangement with a vulnerable balance, affected by several variables ranging from extracorporeal membrane oxygenation [22] to renal complications [23]. Two major geometric variables of great importance for the outcomes of the Norwood procedure are the diameter of the mBT shunt and the presence of aortic coarctation and its severity [2]. Both these parameters can be systematically investigated with a computational approach, which provides a controllable access to data difficult to quantify in this patient population, such as coronary perfusion. A multiscale approach was thus adopted in this study, coupling a family of anatomic models—accounting for a range of mBT shunt

Fig 4. Summary of results for nine models, accounting for all combinations of simulated modified Blalock-Taussig shunt diameters (3.0 [blue], 3.5 [red], and 4.0 [gray] mm) and degrees of coarctation indicated by isthmus diameter. Results indicate changes in (A) cardiac output, (B) ratio of pulmonary to systemic blood flow (Q_P/Q_S), (C) coronary flow, (D) arterial oxygen saturation, (E) mixed venous oxygen saturation, and (F) oxygen delivery.

Fig 5. Computational ventricular pressure-volume loops for different combinations of modified Blalock-Taussig shunt sizes (3.0 [blue], 3.5 [red], and 4.0 [gray] mm) and degrees of coarctation. (A) No coarctation (0% lumen reduction); (B) 4.6 mm coarctation (60% lumen reduction); and (C) 2.3 mm coarctation (90% lumen reduction).
of myocardial oxygen supply–demand balance [25]. And, in this regard, our data report a 29% reduction in oxygen delivery between the best- and worst-case scenarios among the nine simulated anatomicies (422 versus 300 mL · min⁻¹ · m⁻²). As there remains significant interstage mortality for HLHS patients [26], such a vicious circle of reduced coronary perfusion, leading to reduced right ventricular function leading to reduced coronary perfusion and so on, might represent the underlying mechanism for the demise of some patients. Hence, these data tell us that although saturation may be high, care must be taken if there is any suggestion of worsening right ventricular function in HLHS patients with large mBT shunts and coarctation.

It should also be remarked that children with HLHS represent a very special group of patients, and with regard to their coronary circulation, it has been suggested that coronary arteries in these patients may also present histologic abnormalities as well as potential mechanisms of accelerated arteriosclerosis [27]. This study did not account for the cellular level, as it was centered on the geometric effects of shunt size and aortic isthmus on the overall hemodynamics.

Finally, this study focused on stage 1 palliation with mBT shunt alone. Other options for sourcing pulmonary blood flow at the time of the Norwood operation include a central shunt from the ascending aorta to the pulmonary arteries [28], a right ventricle-to-pulmonary artery conduit or Sano shunt [29], and the hybrid approach with pulmonary artery banding [11]. In comparing such different options, it has been specifically indicated that one of the advantages of the Sano modification with respect to the Norwood procedure with mBT shunt could lie precisely in the absence of competitive steal of flow from the aortic side and the coronary circulation [30]. Our study not only supports evidence of a competitive steal phenomenon occurring with the mBT shunt but reinforces the concomitant effect of mBT shunt with aortic coarctation, the combination of the two potentially being particularly deleterious.

Limitations

It would be interesting to compare different scenarios in which the patient receives an mBT shunt and may present also with aortic coarctation, eg, HLHS, hypoplastic right heart syndrome, and pulmonary atresia, to generalize these observations even with different underlying ventricular mechanics. This point warrants further investigation in the future, perhaps including data from conductance catheter studies to account for the different scenarios in the multiscale model.

Conclusions

This study took advantage of the capability of multiscale modeling to test, in a parametric fashion, different combinations of mBT shunt diameters and coarctation severity on a realistic model of aortic arch after the Norwood operation. As suggested by early studies in the field [2], results highlighted the importance of these two geometric parameters, and further showed that the simultaneous presence of a large shunt and severe coarctation can have a detrimental effect on coronary perfusion. This, in turn, may account for poor outcome in some Norwood patients.

Table 2. Comparison Between Best Case Scenario (3.0-mm Modified Blalock-Taussig Shunt, No Aortic Coarctation) and Worst Case Scenario (4.0-mm Modified Blalock-Taussig Shunt, 90% Aortic Lumen Reduction) Among 9 Simulated Combinations of Shunt Size and CoarctationSeverity, Including Results for Additional Simulations Assuming That Cerebral Blood Flow Is Preserved

<table>
<thead>
<tr>
<th>Variable</th>
<th>Best Case</th>
<th>Worst Case</th>
<th>Brain Vasodilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoA lumen reduction (%)</td>
<td>...</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Shunt size (mm)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Brain resistance</td>
<td>(R_{BR})</td>
<td>(R_{BR})</td>
<td>0.78 (R_{BR})</td>
</tr>
<tr>
<td>CO (mL/s)</td>
<td>28.7</td>
<td>26.4 (−8%)</td>
<td>26.6 (−7%)</td>
</tr>
<tr>
<td>Cerebral flow (mL/s)</td>
<td>3.36</td>
<td>2.69 (−20%)</td>
<td>3.36</td>
</tr>
<tr>
<td>Coronary flow (mL/s)</td>
<td>1.07</td>
<td>0.93 (−13%)</td>
<td>0.91 (−15%)</td>
</tr>
<tr>
<td>(Q_T) (mL/s)</td>
<td>13.6</td>
<td>16.4 (+21%)</td>
<td>16.1 (+18%)</td>
</tr>
<tr>
<td>(Q_T/Q_S)</td>
<td>0.9</td>
<td>1.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* Percentages indicate changes from the best-case scenario. CO = cardiac output; CoA = aortic coarctation; Q_T = pulmonary blood flow; Q_S = systemic blood flow.
The authors gratefully acknowledge the support of the following funding bodies: Foundation Leducq, UK National Institute of Health Research, British Heart Foundation, Royal Academy of Engineering/EPSRC, and Heart Research UK. This report is independent research by the National Institute for Health Research Biomedical Research Centre Funding Scheme. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research, or the Department of Health.

References

Appendix

Modeling of Congenital Hearts Alliance (MOCHA) Group: Andrew Taylor, MD, Alessandro Giardini, MD, Sachin Khambadkone, MD, Silvia Schieveno, PhD, Marc de Leval, MD, and T.-Y. Hsia, MD (Institute of Cardiovascular Science, University College London, London, UK); Edward Bove, MD, and Adam Dorfman, MD (University of Michigan, Ann Arbor, MI, USA); G. Hamilton Baker, MD, and Anthony Hla- vacek, MD (Medical University of South Carolina, Charleston, SC, USA); Francesco Migliavacca, PhD, Giancarlo Pennati, PhD, and Gabriele Dubini, PhD (Politecnico di Milano, Milan, Italy); Alison Marsden, PhD (University of California, San Diego, CA, USA); Jeffrey Feinstein, MD (Stanford University, Stanford, CA, USA); Irene Vignon-Clementel (Inria, Paris, France); Richard Figliola, PhD, and John McGregor, PhD (Clemson University, Clemson, SC, USA).